
Unravel Data announced Unravel for Azure Databricks, a solution to deliver comprehensive monitoring, troubleshooting, and application performance management for Azure Databricks environments.
The new offering leverages AI to enable Azure Databricks customers to significantly improve performance of Spark jobs while providing unprecedented visibility into runtime behavior, resource usage, and cloud costs.
“Spark, Azure, and Azure Databricks have become foundational technologies in the big data landscape, with more and more Fortune 1000 organizations using them to build their modern data pipelines,” said Kunal Agarwal, CEO, Unravel Data. “Unravel is uniquely positioned to empower Azure Databricks customers to maximize the performance, reliability and return on investment of their Spark workloads.”
Unravel for Azure Databricks helps operationalize Spark apps on the platform: Azure Databricks customers will shorten the cycle of getting Spark applications into production by relying on the visibility, operational intelligence, and data driven insights and recommendations that only Unravel can provide. Users will enjoy greater productivity by eliminating the time spent on tedious, low value tasks such as log data collection, root cause analysis and application tuning.
“Unravel’s full-stack DataOps platform has already helped Azure customers get the most out of their cloud-based big data deployments. We’re excited to extend that relationship to Azure Databricks,” said Yatharth Gupta, principal group manager, Azure Data at Microsoft. “Unravel adds tremendous value by delivering an AI-powered solution for Azure Databricks customers that are looking to troubleshoot challenging operational issues and optimize cost and performance of their Azure Databricks workloads.”
Key features of Unravel for Azure Databricks include:
- Application Performance Management for Azure Databricks – Unravel delivers visibility and understanding of Spark applications, clusters, workflows, and the underlying software stack
- Automated root cause analysis of Spark apps – Unravel can automatically identify, diagnose, and remediate Spark jobs and the full Spark stack, achieving simpler and faster resolution of issues for Spark applications on Azure Databricks clusters
- Comprehensive reporting, alerting, and dashboards – Azure Databricks users can now enjoy detailed insights, plain-language recommendations, and a host of new dashboards, alerts, and reporting on chargeback accounting, cluster resource usage, Spark runtime behavior and much more.
Azure Databricks is a Spark-based analytics platform optimized for Microsoft Azure. Azure Databricks provides one-click setup, streamlined workflows, and an interactive workspace that enables collaboration between data scientists, data engineers, and business analysts.
An early access release of Unravel for Azure Databricks available now.
The Latest
As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...
Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...
AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...
Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...
A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...
IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...
A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...
According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...
2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...
Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...