
Unravel Data introduced a performance management solution for the Google Cloud Dataproc platform that makes data workloads running on the top of the platform simpler to use and cheaper to run.
Unravel for Cloud Dataproc, which is available immediately, can improve the productivity of data teams with a simple and intelligent self-service performance management capability, helping DataOps teams:
- Optimize data pipeline performance and ensure application SLAs are adhered to
- Monitor and automatically fix slow, inefficient and failing Spark, Hive, HBase and Kafka workloads
- Maximize cost savings by containing resource-hogging users or applications
- Get a detailed chargeback view to understand which users or departments are utilizing the system resources
For enterprises powered by modern data applications that rely on distributed data systems, the Unravel platform accelerates new cloud workload adoption by operationalizing a reliable data infrastructure, and it ensures enforceable SLAs and lower compute and I/O costs, while drastically lowering storage costs. Furthermore, it reduces operational overhead through rapid mean time to identification (MTTI) and mean time to resolution (MTTR), enabled by unified observability and AIOps capabilities.
“Unravel simplifies the management of data apps wherever they reside - on-premises, in a public cloud, or in a hybrid mix of the two. Extending our platform to Google Cloud Dataproc marks another milestone on our roadmap to radically simplify data operations and accelerate cloud adoption,” said Kunal Agarwal, CEO, Unravel Data. “As enterprises plan and execute their migrations to the cloud, Unravel enables operations and app development teams to improve the performance and reduce the risks commonly associated with these migrations.”
In addition to DataOps optimization, Unravel provides a cloud migration assessment offering to help organizations move data workloads to Google Cloud faster and with lower cost. Unravel has built a goal-driven and adaptive solution that uniquely provides comprehensive details of the source environment and applications running on it, identifies workloads suitable for the cloud and determines the optimal cloud topology based on business strategy, and then computes the anticipated hourly costs. The assessment also provides actionable recommendations to improve application performance and enables cloud capacity planning and chargeback reporting, as well as other critical insights.
“We’re seeing an increased adoption of GCP services for cloud-native workloads as well as on-premises workloads that are targets for cloud migration. Unravel’s full-stack DataOps platform can simplify and speed up the migration of data-centric workloads to GCP giving customers peace of mind by minimizing downtime and lowering risk,” said Mike Leone, Senior Analyst, Enterprise Strategy Group. “Unravel adds operational and business value by delivering actionable recommendations for Dataproc customers. Additionally, the platform can troubleshoot and mitigate migration and operational issues to boost savings and performance for Cloud Dataproc workloads.”
The Latest
As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...
Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...
AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...
Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...
A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...
IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...
A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...
According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...
2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...
Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...