What Is Driving Edge Computing and Edge Performance Monitoring?
September 23, 2019

Keith Bromley
Ixia

Share this

There is a fundamental shift currently happening in operational technology today — it's the shift from core computing to edge computing. This shift is being driven by a completely massive growth in data that has already started to take place. According to Cisco Systems, network traffic will reach 4.8 zettabytes (i.e. 4.8 billion terabytes) by 2022.

Businesses cannot continue as usual and still keep up with network performance, security threats, and business decisions. So, in response, network architects are starting to move as much of the core compute resources as they can to the edge of the network. This helps IT reduce costs, improve network performance and maintain a secure network.

However, is the shifting of resources to the edge the right approach?

It could have a negative impact to the network in terms of new security holes, performance issues due to remote equipment, and reduced network visibility.

At the same time, if the network changes are done right, the pendulum could swing to the other side and great there could be great improvements to network security, performance, visibility that take place.

The answer comes down to the deployment of the new architecture. The pivotal tactic is to deploy a visibility architecture that can support the application services and monitoring functions needed. You need network visibility more than ever to: access the data you need, filter it properly, inspect for security threats, and manage SLAs to keep the latency low from the core to the edge.

Two key components are necessary to a successful visibility in this situation — a network packet broker (NPB) and SD-WAN. The NPB provides data aggregation and filtering, application filtering, and performance monitoring all the way to edge devices. SD-WAN services can (and probably should) then be layered on top of the IP-based links to guarantee link performance, as Internet-based services can introduce unacceptable levels of latency and packet loss into the network.

Edge computing deployments have already started to begin. According to a report from Gartner Research, by year-end of 2021, more than 50% of large enterprises will deploy at least one edge computing use case to support IoT or immersive experiences, versus the less than 5% that are currently performing this in 2019.

When it comes down to it, while the promise of edge computing is real, the actual deployment scenario (and whether or not you build network visibility into your network) is what is going to make or break the performance of your new architecture.

Keith Bromley is Senior Manager, Solutions Marketing at Ixia Solutions Group, a Keysight Technologies business
Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...