It wasn't so long ago that enterprises housed their critical business applications within their own network of servers and client computers. Monitoring and troubleshooting performance issues like latency was far easier. So, even though our network monitoring and diagnostics tools have improved greatly, the introduction of a myriad interconnected SaaS applications and cloud hosted services have greatly complicated our typical network landscape, causing knock-on effects like latency to appear.
As enterprises outsource more and more of their applications and data hosting to external vendors, they introduce more weak links into the network
As enterprises outsource more and more of their applications and data hosting to external vendors, they introduce more weak links into the network. SaaS services are generally reliable, but without a dedicated connection they can only be as good as the internet connection they're using.
From a network management perspective, the secondary issue with externally hosted apps and services is that the IT team has far less control and visibility, making it more difficult to keep vendors honest about meeting their service level agreements (SLAs).
Monitoring and troubleshooting the network traffic within the relatively controlled environment of an enterprise headquarters is manageable for most IT teams. But for organizations built on a distributed business model with multiple branch offices or remote workers, using dedicated MPLS lines quickly becomes cost prohibitive. When you consider that the traffic from applications like Salesforce, Slack, Office 365, Citrix and others typically bypasses HQ, it's not surprising that latency is becoming more common and increasingly difficult to troubleshoot.
One of the first casualties of latency is VoIP call quality, which manifests as unnatural delays in phone conversations. With the explosive growth of VoIP and other UCaaS applications, this problem will continue to grow. Another area where latency takes its toll is in data transfer speeds. This can lead to a series of cascading problems, particularly when large data files or medical records are being transferred or copied from one location to another. Latency can be an issue for large data transactions like database replication, too, requiring more time to carry out routine activities.
The Impact of Distributed Networks and SaaS
Enterprise network performance monitoring needs to shift out of the data center
With so many connections to the internet from so many locations, it makes sense that enterprise network performance monitoring needs to shift out of the data center. One of the best approaches is to find tools that monitor the connection at all of their remote locations. Most of us use applications like Outlook, Word and Excel on an almost daily basis. If we're using Office 365, these applications are probably configured to connect to Azure rather than the enterprise data center. If the IT team doesn't actively monitor network performance directly at the branch office, then they completely lose sight of the user experience at that location. They may think that the network is performing well, when in fact the users are being frustrated by an undiagnosed problem.
When traffic from SaaS vendors and other cloud-based storage providers travels to and from an organization, it can be impacted by jitter, trace route and sometimes compute speed, meaning that latency becomes a very serious possibility for end users and customers. Working with vendors who have a physical footprint close to where the data is needed is one way to minimize potential issues caused by distance. But even in a parallel process, you may have thousands or millions of connections trying to get through at once, causing a tiny delay. Those delays build up and become much worse over long distances.
Is Machine Learning the Answer?
We've all heard about the power of AI and machine learning to help automate aspects of network management, but it's even difficult for these cutting-edge tools to minimize latency. The problem stems from the fact that we cannot accurately predict when a switch or router will become overloaded with traffic. The delay may be just a millisecond or a hundred milliseconds at most, but once a piece of equipment is overloaded, the data gets stuck in a queue until it can be processed. Is machine learning the answer? Maybe, but we're not there yet.
Take the Broad, Narrow Approaches
Despite all the benefits of SaaS solutions, latency will continue to be a challenge unless corporate IT teams rethink their approach to network management. In a nutshell, they need to take a broad, decentralized approach to network monitoring that encompasses the entire network and all its branch locations. And they need to find better ways of monitoring and improving true end-user experience. Once they understand what users are experiencing, in real time, they will see – and hopefully fix – severe latency issues before end users even realize there was a problem.
The Latest
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...