Why Metrics Must Guide Your DevOps Initiative
December 08, 2017

Jonah Kowall
Kentik

Share this

Metrics-oriented thinking is key to continuous improvement – and a core tenant of any agile or DevOps philosophy. Metrics are factual and once agreed upon, these facts are used to drive discussions and methods. They also allow for a collaborative effort to execute decisions that contribute towards business outcomes.

DevOps, although becoming a commonly used job title, is not a role or person and there is no playbook or rule set to follow. Instead, DevOps is a philosophy which spans people, process, and technology. The goal is releasing better software more rapidly, and keeping said software up and running by joining development and operational responsibilities together.

Additionally, DevOps aims to improve business outcomes, but there are challenges in selecting the right metrics and collecting the metric data. Continuous improvement requires continuous change, measurement, and iteration. What’s more, the agreed-upon metrics drive this cycle, but also create insights for the broader organization.


Data-Driven DevOps

A successful DevOps transformation focuses on a couple areas. To start, a culture change is needed between development and operations teams. Another core tenant of DevOps is measurement. In order to accomplish a true DevOps transformation, it’s important to measure the current situation and regularly review metrics which indicate improvement or degradation. One of the core tenants of DevOps is measurement, and using said measurements as facts when driving decision making. These metrics should span several areas which may have been considered disjointed in the past.

To help DevOps teams think of possible metrics and how these metrics relate to key initiatives, Gartner recently released this useful metrics pyramid for DevOps:


Many of these metrics span development, operations, and most importantly – the business. They measure efficiency, quality, and velocity. However, Gartner points out that the hardest part is often defining what we can collect, take action upon, audit, and use to drive a lifecycle.

The second challenge (which Gartner does not discuss) is how these metrics should be linked together to offer meaningful insights. If the metrics do not allow linkage between a release and business performance, attribution gaps remain. And unfortunately, many enterprises today analyze metrics that have a lack of linkage or relationship between them.

To help with these relationships, context is critical. Without context, metrics can be open to interpretation, especially as you move up the Gartner pyramid. So it’s crucial to be able to link metrics together and attribute earnings or cash flow with a release or change that represents improvements in the application.

Additionally, metrics should be able to drive visibility inside the application without creating an additional burden for developers. With automated instrumentation, metric data can be produced consistently and comprehensively across all teams. This is extremely beneficial as many teams have different ways of collecting data, which can traditionally lead to inconsistencies. Consistent measurements should always be obtained from the application components and desired business outcomes of the application.

Jonah Kowall is CTO of Kentik
Share this

The Latest

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...

September 07, 2021

As we look into the future direction of observability, we are paying attention to the rise of artificial intelligence, machine learning, security, and more. I asked top industry experts — DevOps Institute Ambassadors — to offer their predictions for the future of observability. The following are 10 predictions ...

September 01, 2021

One thing is certain: The hybrid workplace, a term we helped define in early 2020, with its human-centric work design, is the future. However, this new hybrid work flexibility does not come without its costs. According to Microsoft ... weekly meeting times for MS Teams users increased 148%, between February 2020 and February 2021 they saw a 40 billion increase in the number of emails, weekly per person team chats is up 45% (and climbing), and people working on Office Docs increased by 66%. This speaks to the need to further optimize remote interactions to avoid burnout ...

August 31, 2021

Here's how it happens: You're deploying a new technology, thinking everything's going smoothly, when the alerts start coming in. Your rollout has hit a snag. Whole groups of users are complaining about poor performance on their devices. Some can't access applications at all. You've now blown your service-level agreement (SLA). You might have just introduced a new security vulnerability. In the worst case, your big expensive product launch has missed the mark altogether. "How did this happen?" you're asking yourself. "Didn't we test everything before we deployed?" ...

August 30, 2021

The Fastly outage in June 2021 showed how one inconspicuous coding error can cause worldwide chaos. A single Fastly customer making a legitimate configuration change, triggered a hidden bug that sent half of the internet offline, including web giants like Amazon and Reddit. Ultimately, this incident illustrates why organizations must test their software in production ...