Why Traditional APM Tools Are Insufficient for Modern Enterprise Applications
September 26, 2019

Navin Israni

Share this

APM tools are your window into your application's performance — its capacity and levels of service. These tools help admins conduct regular health checks on the app so they can tell the state of the app without any ambiguity.

Any application is made up of its layers and its subsystems — the servers, the virtualization layers, the dependencies, and its components. The purpose of such tools has traditionally been to monitor the performance of all the subsystems.

A traditional approach to APM involved the use of arbitrary sampling strategies, algorithm-based data completion, and a fair bit of prediction to analyze the root cause. So, the agents had to come up with a hypothesis of why things were wrong and devise a sampling strategy to test that theory. Any data gaps were predictively filled by algorithms.

Automation is one of the many ways that founders can scale their business. As organizations grow, their automated processes will only generate more data, not less. As automation seeps into every facet of the digital enterprise, the applications interfacing organizations with their audience generate large swathes of raw, unsampled data.

Traditional APM tools are now struggling due to the mismatch between their specifications and expectations.

Modern application architectures are multi-faceted; they contain hybrid components across a variety of on-premise and cloud applications. Modern enterprises often generate data in silos with each outflow having its own data structure. This data comes from several tools over different periods of time.

Such diversity in sources, structure, and formats present unique challenges for traditional enterprise tools.

1. Inability to handle massive, multi-dimensional data

As discussed before, modern applications are not atomic; they are constituent of several components and subsystems all of which contribute to its overall performance. 

Each subsystem can produce several terabytes of data. Such scale of data brings forth at least a few problems with the earlier-generation APM tools:

■ The efficient storage of and access to this data is a peculiar challenge.

■ Real-time analysis of this data on the mammoth-scale is an even bigger challenge for traditional APM tools.

■ Often the data may be multiple types of data sources — in flat files, structured query-based databases, or even complete systems of their own with API-based access.

2. Propagation of fragmentation into APM tools

Often, we see new tools for each functional area even within the same data center. This fuels silo creation as segregated teams support individual tools for managing the server, network, storage, and virtual layers. 

A count of anywhere between 6 to 10 tools would not be uncommon. Each of these proprietary tools may come with vendor lock-in, forcing companies to continue using them with restrictions or pay more when the usage increases.

This is not ideal for enterprises as most modern applications are dynamic and interdependent in nature. For example, as user-base increases, a single business request to increase capacity will mean synchronous updating and coordination among silos for databases, servers, networks, and virtual layers.

At the intersection of these functional areas, agents do the job of coordinating the data and passing on the configurations. Without a cohesive plan to manage these agents (automated or manual), it becomes difficult to collectively address issues to optimize their efficiency. 

Due to the fragmentation in tools, other issues like long-term licensing come to surface and companies have to keep paying for these tools over the long term. One possible solution is to outsource product development. This way companies can target multiple functionalities with a single custom-developed app and finite vendor contracts.

3. Security risks during seasonal spikes

To proactively identify problems, these tools rely on detecting anomalies in data sources that are infrastructure-centric. This would typically include log files, memory metrics, CPU usage, and so on. 

If there are seasonal spikes, such as massive holiday sales like Black Friday, the admins would be flooded with spikes across the board. Hiding an attack in between these spikes becomes easier as most traditional APM tools can't differentiate between these spikes from distributed denial of service (DDoS) attacks.

4. Difficulty in root-cause analysis

Agents can stitch together data from various systems to identify root cause of major problems. To detect anomalies, agents identify patterns and then use queries to confirm their assumptions of a diagnosis.

Because of human involvement in the diagnosis process, there is a strong possibility of selection/sampling bias being introduced in the process.

Also, these analyses are estimates at best as they rely on testing a hypothesis.

An accurate, tools-agnostic analysis of the root cause requires not only identifying anomalies but patterns of these aberrations over time. This is where traditional APM tools fall short and predictive analysis tools truly shine.

Final Words

Traditional APM tools lack the capacity to handle the scale of data being generated by modern applications. Also, these applications generally occupy status of legacy apps in enterprises, which makes replacing them even more difficult.

So, while management is likely to see them as roadblocks, removing these legacy apps completely from the enterprise would mean ripping the band-aid off. It is a hard decision to make and one that requires a fair bit of convincing and strategy.

This might look like hard work, but it is better than letting these roadblocks continue to slow your processes down. It is important to take action before the damage becomes critical.

Navin Israni is a Senior Content Writer at Arkenea
Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...