3 Essentials for Agile Operations
June 23, 2015

Pete Waterhouse
CA Technologies

Share this

For decades IT operations has been viewed as something of a back-office technology function; the IT engine room. That’s not wrong since the applications under control have generally been large monolithic systems of record designed to automate internal business processes. These systems have been inherently complex and tightly-coupled, so changing them has been difficult, time consuming and costly. As such, our operational mindset has remained firmly focused on maintaining reliability and avoiding risk at all costs – even if that means holding back releases and ticking off our colleagues in development.

Not anymore.

Now, business success is not only dependent on assuring the reliability of internal business processes, but also by leveraging mobile computing and the cloud for more ‘experience-centric’ customer engagement. Now, software has the potential to forge new business models and disrupt markets, meaning change intolerance and aversion makes way to experimentation and innovation. The net-net of course is faster more iterative application development, newer highly scalable architectures, and a far more diverse set of applications – some of which will be standalone, while others will be integrated within our existing business process fabric.

So against this backdrop, what are main reasons the IT operations discipline must adapt to support the application-driven imperatives of the business and what characterizes a successful agile operations transformation? It boils down to delivering on three essential requirements – speed, quality and scale.

In Pursuit of Quality

Since the applications now being developed are far more customer-centric, service quality will be assessed at many more points of engagement. Consider a web/mobile airline booking system for example. This might be comprised of ten or more discrete services (e.g. booking flight, checking baggage, choosing seats, ordering meal, scanning boarding pass, car rental etc.). Every one of which constitutes a point of interaction where quality in the form of an optimum experience has a direct correlation to customer retention and business gain.

The traditional approach would be to wait for each of these applications to reach production and then initiate monitoring. Yet this is problematic since any problems now have a significantly greater impact on the business and in all likelihood will require developers to fix them. The result – greater conflict, more technical debt and lost business.

A far more agile approach is to incorporate monitoring earlier in the software development lifecycle. This involves collaborating with development to replicate the deep analytics and traceability insights normally gained in production and applying them in a development and testing context. Through this, the immediate gain is stopping defects leaking into production, but there are more lasting benefits too.

Firstly, development has much earlier visibility into quality requirements before the system goes live and can enact any necessary refactoring strategies.

Secondly, key insights gained through transaction monitoring can be shared with the operations team, so they can immediately establish metrics and performance KPI’s against which the production environment can be measured.

Finally, and in true DevOps fashion, this approach creates tighter feedback loops so that everyone knows who the app is serving, what experience is expected, and where changes impact performance – continuously.

The Need for Speed

With business now being driven by a complex mix of highly experiential software services, it’s essential that any problems are detected and resolved at a pace that matches the speed of delivery. This however is difficult because monitoring systems generally lack the ability to provide uninterrupted transaction level visibility.

Some toolsets for example provide rich mobile analytics (usage, behavior, crashes) which is all great. But what happens when the success of a new national mobile app based sales promotion depends on the successful recording against a backend database and requires no network latency at peak times. Without end-to-end visibility that can follow transactions across all apps and infrastructure and that provides insight into the underlying causes for failure, no realistic service levels can be established with the business.

Scaling the Summit

Embracing newer horizontally scalable architectures is the way leading innovators are future proofing their businesses. Combined with microservice style development these architectures facilitate more rapid deployment of independent business services. Services that truly harness the cloud by dynamically scaling resources.

Taking advantage of this means monitoring must become equally future proof by scaling in tandem. However attractive from an architectural perspective, these applications will introduce greater complexity, more interdependencies, newer tech like NoSQL and document-based data stores (e.g. Cassandra and MongoDB) and initiate complex system behaviors due to their highly distributed nature.

The old approach of teams maintaining their own sets of specialized diagnostic tools over infrastructure that falls within their own silo is no longer sustainable. Now, more unified monitoring approaches must provide cross-functional teams with fast visual comprehension to reveal what matters versus what can and should be ignored. Additionally, change analysis to more rapidly isolate problems increases in importance, since the resources underpinning cloud-native applications will unexpectedly shift based on demand, cost and lifecycle.

New applications and architectures supporting more transformative digital business demand IT operations must become as agile as development.

Pete Waterhouse is Senior Strategist at CA Technologies
Share this

The Latest

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...

September 30, 2019

Digital transformation, migration to the enterprise cloud and increasing customer demands are creating a surge in IT complexity and the associated costs of managing it. Technical leaders around the world are concerned about the effect this has on IT performance and ultimately, their business according to a new report from Dynatrace, based on an independent global survey of 800 CIOs, Top Challenges for CIOs in a Software-Driven, Hybrid, Multi-Cloud World ...