Legacy Application Performance Management (APM) vs Modern Observability - Part 2
May 10, 2022

Colin Fallwell
Sumo Logic

Share this

In Part 1 of this series, we introduced APM and Modern Observability. If you haven't read it, you can find it here.

For the past decade, Application Performance Management has been a capability provided by a very small and exclusive set of vendors. These vendors provided a bolt-on solution that provided monitoring capabilities without requiring developers to take ownership of instrumentation and monitoring. You may think of this as a benefit, but in reality, it was not.

Operations usually bought APM and would almost always struggle with finding and improving signal quality, having too much data, having the wrong data, and interpreting the data. Developers didn't have to care about how things were observed and had no real ownership in the journey of keeping things reliable. This has almost always led to a higher degree of low-quality software and higher MTTR.

The High Cost of Exclusivity

APM vendors have struggled with Cloud-Native architectures. Their agents were never designed for the Cloud and are almost always overkill for small microservices and ephemeral containers. Their agent code remains exclusive, lacks interoperability with one another, and provides features (such as heap analysis and thread dumps) that are no longer relevant in the cloud.

Despite this, legacy APM vendors today are touting support for Modern Observability and Open Telemetry. There is a caveat in that they provide this support by requiring customers to continue leveraging their proprietary agents (for the broadest support).

Keeping customers dependent on the vendor-owned code to equal out-of-the-box CNCF capabilities to me is counter-intuitive. The primary reason for this mindset and approach stems from their legacy beginnings. Generally speaking, their backends are not compatible with modern open-schemas of metadata and tags. To work around the limitations of being born in the legacy world, they must leverage proprietary agents as an abstraction layer to transform and map open standards to their closed ecosystem. This benefits these vendors but leaves customers locked into a single vendor's agent codebase (or more likely, multiple vendors' agent codebases to cover different domains such as logging, metrics, and traces), which come loaded with technical debt and are serviceable by only a small team of developers.

In relation to modern observability, the only argument we could try to make for proprietary agents might center around the following:

■ The agents are good at abstracting the control plane, simplifying telemetry acquisition via remote management and UI.

■ They provide features for dynamic instrumentation of the services, and environments they operate in.

Fortunately for the industry at large, this benefit is rapidly eroding with projects such as OpAmp (Open telemetry's Open Agent Management Protocol) and recent significant advances in auto-instrumentation frameworks and capabilities like span-events. The future does not look good for vendors pushing organizations to remain locked in exclusive, black box software to acquire their telemetry.

We are seeing more and more organizations realizing the enormous benefits that come with owning their telemetry from the outset. These companies are ditching proprietary agents and embracing open standards for telemetry.

Indeed, there is a new mantra emerging in the industry, "Supply vendors your telemetry, don't rely on you vendors to supply your telemetry."

Over the years, I have worked at many APM companies and have witnessed the downsides of exclusivity. For the customers, they've had to endure an extremely high cost of ownership related to:

■ Agent deployment and version maintenance

■ Massive tech debt in agent codebases

■ Specialized and expensive training

■ Ever-changing pricing models to support cloud-architectures

Exclusivity was born out of complexity. Simply put, it used to be very hard to collect telemetry in this way. APM vendors were truly successful at abstracting the complexity of acquiring telemetry.

In the early days, there were only a handful of developers in the world that really understood Java well enough under the hood and could build an agent capable of dynamically rewriting byte-code at runtime to capture the timings of code execution without breaking the application.

Some vendors fared worse than others supporting "dynamic" languages such as Python, PHP, etc. Nearly all of them struggle to maintain support for new frameworks and stacks and lag the market. This is in stark contrast to how Open Source contributions and innovation happen today. The net result is a yearly backlog of unhappy customers and support cases to resolve broken correlations in trace collection while waiting for vendors to support, for example, the next version of NodeJS or React that's been out for months.

Legacy APM is a great choice for the legacy, monolithic, on-prem environment. It is not my preferred choice for Cloud-Native architectures where things evolve quickly, are small down to the size of a function, and are highly ephemeral.

None of the legacy APM vendors invested in logging and even downplayed logging as unnecessary if you could trace it. This brought up questions from them such as:

Why log if you can capture errors and stack traces in the APM world?

Who wants to clean up all the exception logging to understand and rely on log content for knowing if something is healthy?

Most developers I worked with over my career did not want to take on that effort as technical debt.

In these APM solutions, the metrics being collected and presented were only those that were included when you installed the agent. Rarely did they provide an easy way of capturing custom metrics, nor was there really much in way of metric correlation across the layers of the stacks. These platforms lacked scalability and suffered from an architecture that didn't include time-series datastores. In fact, the scaling factor has always been the achilles heel of legacy APM vendors because none were born cloud-native and all must support proprietary data schemas, and progress on re-writing APM platforms to be compliant with the modern cloud has been painfully slow.

In the final installment (Part 3) of this series, I dive into the birth and history of modern observability.

Colin Fallwell is Field CTO of Sumo Logic
Share this

The Latest

September 27, 2022

Users have high expectations around applications — quick loading times, look and feel visually advanced, with feature-rich content, video streaming, and multimedia capabilities — all of these devour network bandwidth. With millions of users accessing applications and mobile apps from multiple devices, most companies today generate seemingly unmanageable volumes of data and traffic on their networks ...

September 26, 2022

In Italy, it is customary to treat wine as part of the meal ... Too often, testing is treated with the same reverence as the post-meal task of loading the dishwasher, when it should be treated like an elegant wine pairing ...

September 23, 2022

In order to properly sort through all monitoring noise and identify true problems, their causes, and to prioritize them for response by the IT team, they have created and built a revolutionary new system using a meta-cognitive model ...

September 22, 2022

As we shift further into a digital-first world, where having a reliable online experience becomes more essential, Site Reliability Engineers remain in-demand among organizations of all sizes ... This diverse set of skills and values can be difficult to interview for. In this blog, we'll get you started with some example questions and processes to find your ideal SRE ...

September 21, 2022

US government agencies are bringing more of their employees back into the office and implementing hybrid work schedules, but federal workers are worried that their agencies' IT architectures aren't built to handle the "new normal." They fear that the reactive, manual methods used by the current systems in dealing with user, IT architecture and application problems will degrade the user experience and negatively affect productivity. In fact, according to a recent survey, many federal employees are concerned that they won't work as effectively back in the office as they did at home ...

September 20, 2022

Users today expect a seamless, uninterrupted experience when interacting with their web and mobile apps. Their expectations have continued to grow in tandem with their appetite for new features and consistent updates. Mobile apps have responded by increasing their release cadence by up to 40%, releasing a new full version of their app every 4-5 days, as determined in this year's SmartBear State of Software Quality | Application Stability Index report ...

September 19, 2022

In this second part of the blog series, we look at how adopting AIOps capabilities can drive business value for an organization ...

September 16, 2022

ITOPS and DevOps is in the midst of a surge of innovation. New devices and new systems are appearing at an unprecedented rate. There are many drivers of this phenomenon, from virtualization and containerization of applications and services to the need for improved security and the proliferation of 5G and IOT devices. The interconnectedness and the interdependencies of these technologies also greatly increase systems complexity and therefore increase the sheer volume of things that need to be integrated, monitored, and maintained ...

September 15, 2022

IT talent acquisition challenges are now heavily influencing technology investment decisions, according to new research from Salesforce's MuleSoft. The 2022 IT Leaders Pulse Report reveals that almost three quarters (73%) of senior IT leaders agree that acquiring IT talent has never been harder, and nearly all (98%) respondents say attracting IT talent influences their organization's technology investment choices ...

September 14, 2022

The findings of the 2022 Observability Forecast offer a detailed view of how this practice is shaping engineering and the technologies of the future. Here are 10 key takeaways from the forecast ...