As CIOs Address App Sprawl, Observability Can't Be an Afterthought
May 09, 2024

Bill Lobig
IBM

Share this

App sprawl has been a concern for technologists for some time, but it has never presented such a challenge as now. As organizations move to implement generative AI into their applications, it's only going to become more complex. In fact, a recent Canva report found that 72% of CIOs see application sprawl as a challenge — and with 71% of CIOs expecting to adopt 30-60 new apps this year, this complexity is poised to keep growing.

Potential solutions include consolidating applications, optimizing workflows, and automating IT processes to reduce strain on technologists so they can tackle the issue of app sprawl head-on. While these are all valid and necessary approaches, observability is a necessary component for understanding the vast amounts of complex data within AI-infused applications, and it must be the centerpiece of an app- and data-centric strategy to truly manage app sprawl.

Cracking the Code for AI App Sprawl Challenges

In a year of elevated global IT spend, ensuring investments aren't wasted is a necessity for overwhelmed technology leaders, who not only must make decisions around which technologies to implement, but also make sense of application performance amid growing tides of vast and complex data.

When AI enters the mix, it's even more important to have complete visibility, which many organizations still lack. Observability tools and practices can help technologists address AI app sprawl by providing visibility into the performance, behavior, and dependencies of AI applications. Unfortunately, many teams are still attempting to work with incomplete visibility, meaning they simply don't know what they don't know.

Simply put, traditional application performance monitoring (APM) tools can provide visibility to a certain degree, but they weren't built to necessarily account for the influx of generative AI applications that modern enterprises are dealing with.

End-users for generative AI-infused applications demand continuous availability and frictionless experience. However, with a lack of real-time visibility, they will feel when an outage or delay compromises their experience, particularly as applications span numerous platforms. Not to mention, the implementation and understanding of complex generative AI models' behaviors are still something many organizations are working to figure out. These potential blind spots could create significant performance, compliance, and security issues.

Observe the Full Stack So You Can Add to It

Organizations can better understand the internal state of their AI applications by analyzing their external outputs with observability. When this is connected to business outcomes and effectively addressed, technology teams can lay the groundwork for a well-functioning application monitoring and management process. So, when generative AI is introduced to the environment, the foundation is already in place to effectively see and optimize application processes.

As generative AI applications join the enterprise equation, observability tools are a must-have for facilitating the delivery of higher-quality software at a faster pace — these are best enabled through:

Finding and fixing the "unknown unknowns": You can't fix what you can't see. Unfortunately, many monitoring practices and tools can only address flaws that are previously known. Observability uncovers conditions that would be impossible to find manually or with traditional platforms. It then monitors the correlation to different performance flaws and gives context for discovering root causes, resulting in quick and easy remediation.

Detecting and remediating issues early on: With observability, monitoring is integrated into the initial stages of software development. It's then easy to pinpoint and rectify new code issues before they affect the service level agreements (SLAs) and customer experience.

Self-healing application infrastructure and automated resolution: Observability can be coupled with automation capabilities to anticipate issues from system outputs and resolve them autonomously without requiring manual intervention.

Scaling and load balancing: We need to be able to observe and control the current load on systems but also help forecast future demands. The data can be used to optimize applications in real-time without having the end-users feel any impact.

Cost management: From optimizing workloads to computational resources, SREs can and should find ways to save on VM, GPU, cloud and inferencing costs through observability.

Observability is crucial for organizations to address AI app sprawl and overcome myriad challenges that come along with it, especially as generative AI becomes a mainstay across enterprises. By following observability best practices and deploying the right automated tools, organizations can proactively identify and resolve issues and ensure all AI applications are always available and friction-free.

Bill Lobig is VP, Product Management, IBM Automation
Share this

The Latest

May 23, 2024

Hybrid cloud architecture is breaking the backs of network engineering and operations teams. These teams are more successful when their companies go all-in with the cloud or stay out of it entirely. When companies maintain hybrid infrastructure, with applications and data residing across data centers and public cloud services, the network team struggles. This insight emerged in the newly published 2024 edition of Enterprise Management Associates' (EMA) Network Management Megatrends research ...

May 22, 2024

As IT practitioners, we often find ourselves fighting fires rather than proactively getting ahead ... Many spend countless hours managing several tools that give them different, fractured views of their own work — which isn't an effective use of time. Balancing daily technical tasks with long-term company goals requires a three-step approach. I'll share these steps and tips for others to do the same ...

May 21, 2024

IT service outages are more than a minor inconvenience. They can cost businesses millions while simultaneously leading to customer dissatisfaction and reputational damage. Moreover, the constant pressure of dealing with fire drills and escalations day and night can take a heavy toll on ITOps teams, leading to increased stress, human error, and burnout ...

May 20, 2024

Amid economic disruption, fintech competition, and other headwinds in recent years, banks have had to quickly adjust to the demands of the market. This adaptation is often reliant on having the right technology infrastructure in place ...

May 17, 2024

In MEAN TIME TO INSIGHT Episode 6, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses network automation ...

May 16, 2024

In the ever-evolving landscape of software development and infrastructure management, observability stands as a crucial pillar. Among its fundamental components lies log collection ... However, traditional methods of log collection have faced challenges, especially in high-volume and dynamic environments. Enter eBPF, a groundbreaking technology ...

May 15, 2024

Businesses are dazzled by the promise of generative AI, as it touts the capability to increase productivity and efficiency, cut costs, and provide competitive advantages. With more and more generative AI options available today, businesses are now investigating how to convert the AI promise into profit. One way businesses are looking to do this is by using AI to improve personalized customer engagement ...

May 14, 2024

In the fast-evolving realm of cloud computing, where innovation collides with fiscal responsibility, the Flexera 2024 State of the Cloud Report illuminates the challenges and triumphs shaping the digital landscape ... At the forefront of this year's findings is the resounding chorus of organizations grappling with cloud costs ...

May 13, 2024

Government agencies are transforming to improve the digital experience for employees and citizens, allowing them to achieve key goals, including unleashing staff productivity, recruiting and retaining talent in the public sector, and delivering on the mission, according to the Global Digital Employee Experience (DEX) Survey from Riverbed ...

May 09, 2024

App sprawl has been a concern for technologists for some time, but it has never presented such a challenge as now. As organizations move to implement generative AI into their applications, it's only going to become more complex ... Observability is a necessary component for understanding the vast amounts of complex data within AI-infused applications, and it must be the centerpiece of an app- and data-centric strategy to truly manage app sprawl ...