8 Big Data Pain Points and How to Address Them - Part 1
August 02, 2018

Kamesh Pemmaraju
ZeroStack

Share this

The word "Big" in Big Data doesn't even come close to capturing what is happening today in our industry and what is yet to come. The volume, velocity, and variety of data that is being generated has overwhelmed the capabilities of infrastructure and analytics we have today.

We are now experiencing Moore's law for data growth: data is doubling every 18 months. No wonder IDC forecasts that the global datasphere will grow to 163 zettabytes (a trillion gigabytes) by 2025. That's ten times the data generated in 2016.

Data scientists typically may have to simultaneously combine data from various sources with different volume, variety, and velocity needs to gain useful insights, but that in turn puts different demands on processing power, storage and network performance, latencies etc. Here's a quick look at the different types of Big Data sources:

Unstructured data: The type of data generated by sources such as social media, log files, and sensor data is not very structured and hence is generally not amenable to traditional database analysis methods. A large variety of Big Data tools, techniques, and approaches have emerged in the last few years to ingest, analyze, and extract customer sentiment from social media data. Newer approaches include Natural Language Processing, News Analytics, unstructured text analysis, etc.

Semi-structured data: Some unstructured data may in fact have some structure to them. Examples include email, call center logs, and IoT data. Some in the industry have coined a new term, "Semi-structured data," to describe these data sources. These may require a combination of traditional databases and newer Big Data tools to extract useful insights from these types of data.

Streaming data brings in the dimension of higher velocity and real-time processing constraints. The velocity of data varies widely depending on the type of application: IoT data tends to be small packets of data regularly streamed at low velocity, while 4K video streams stretch the velocity to the highest end of the spectrum.

The alluring promise of these new use cases – and associated emerging technologies and tools – is that they can generate useful insights faster so that companies can take actions to achieve better business outcomes, improve customer experience, and gain significant competitive advantage.

No wonder Big Data projects have been on the CIO top ten initiatives for the past decade – almost 70 percent of Fortune 1000 firms rate big data as important to their businesses; over 60 percent already have at least one big data project in place.

While data scientists are dealing with the complexity of how to derive value from diverse data sources, IT practitioners need to figure out the most efficient way to deal with the infrastructure requirements of Big Data projects. Traditional bare-metal infrastructure, with its siloed management of servers, storage, and networks, is not flexible enough to tackle the dynamic nature of the new Big Data workloads. This is where cloud-based systems shine. However, many challenges remain to be addressed in the areas of workload scaling, performance and latency, data migration, bandwidth limitations, and application architectures.

There are many pain points that companies experience when they try to deploy and run Big Data applications in their complex environments or use public or private cloud platforms, and there are also some best practices companies can use to address those pain points.

PAIN POINT 1: LONG COMMUTE FROM STORAGE TO COMPUTE

As data amounts grow from terabyte to petabyte and beyond, the time it takes to transport this data closer to compute resources and perform data processing and analytics takes longer and longer, impeding the agility of the organization. Public cloud vendors like AWS, who are all about centralized data centers, want to get your data into their cloud and go to extreme lengths (see AWS snowmobile) to get it. Furthermore, data transfer fees are mostly unidirectional, i.e., only data that is going out of an AWS service is subject to data transfer fees. Not only is this a classic lock-in scenario, but it also goes against other key emerging trends:

Edge Computing and Artificial Intelligence, especially for use cases such as IoT, 5G, image/speech recognition, Blockchain, and others, where there is a need to place processing and data closer to each other and/or closer to where the user or device is. Edge computing delivers faster data analytics results with the data being closer to processing while simultaneously reducing the cost of transporting data to the cloud.

Artificial Intelligence systems are more effective the more data they are given. For example, in deep learning, the more cases (data) you give to the system, the more it learns and the more accurate its results become. This is a case where you need massive parallel processing (e.g., using GPUs) of large data sets. Big Data analytics and AI can complement each other to improve speed of processing and produce more useful and relevant results.

To address the need to get data to where the compute resources are, IT leaders should look for hyper-converged, scale-out solutions that bring together compute, storage, and networking, thus reducing data I/O latency and improving data processing and analytics times. For even better performance, they should look for solutions that can bring the computing units (VMs or containers) as close to the physical storage as possible, without losing the manageability of the storage solution and while maintaining multi-tenancy across the cluster. For example, a Hadoop Data Node VM running on the same physical host and accessing local SSDs will experience the highest performance and faster results overall without impacting other workloads running within other tenants.

IT leaders can take advantage of many emerging memory technologies such as persistent memory (a new memory technology between DRAM and flash that will be non-volatile, with low latency and higher capacity than DRAMs), NVMe, and faster flash drives. With prices falling rapidly, there seems little need for spinning disks for primary storage.

IT administrators should implement a central way to manage all the edge computing sites, with the ability to deploy and manage multiple data processing clusters within those sites. Access rights to each of these environments should be managed through strict BU-level and Project-level RBAC and security controls.

PAIN POINT 2: DISTRIBUTED TEAMS, LOCAL PERFORMANCE NEEDS

For data science development and testing use cases, companies do not build a single huge data processing cluster in a centralized data center for all of their big data teams spread around the world. Building such a cluster in one location has DR implications, not to mention latency and country-specific data regulation challenges. Typically, companies want to build out separate local/edge clusters based on location, type of application, data locality requirements, and the need for separate development, test, and production environments.

Having a central pane of glass for management becomes crucial in this situation for operational efficiency, simplifying deployment, and upgrading these clusters. Having strict isolation and role-based access control (RBAC) is often a security requirement.

IT administrators should implement a central way to manage diverse infrastructures in multiple sites, with the ability to deploy and manage multiple data processing clusters within those sites. Access rights to each of these environments should be managed through strict BU-level and Project-level RBAC and security controls.

PAIN POINT 3: STUCK ON BARE METAL AND ITS SILO INEFFICIENCIES

Companies still run the majority of their Big Data workloads, particularly Hadoop-based workloads, on bare metal. This is obviously not as scalable, elastic, or flexible as a virtual or cloud platform. Traditional bare metal environments are famous for creating silos where various specialist teams (storage, networking, security) form fiefdoms around their respective functional areas. Silos impede velocity because they lead to complexity of operations, lack of consistency in the environment, and lack of automation. Automating across silos turns into an exercise of custom scripts and lot of "glue and duct tape," which makes maintenance and change management complex, slow, and error-prone.

A virtualized environment for Big Data allows data scientists to create their own Hadoop, Spark or Cassandra clusters and to evaluate their algorithms. These clusters need to be self-service, elastic and high performing. IT should be able to control the resource allocation to data scientists and teams using quotas and role-based access control.

Better yet, IT managers should look for an orchestration platform that can deal with both bare metal and virtual environments, so IT can place workloads in the best target environment based on performance and latency requirements.

Read 8 Big Data Pain Points and How to Address Them - Part 2, to learn about 5 more big data pain points.

Kamesh Pemmaraju is VP of Product at ZeroStack
Share this

The Latest

July 08, 2020

Every business has the responsibility to do their part against climate change by reducing their carbon footprint while increasing sustainability and efficiency. Harnessing optimization of IT infrastructure is one method companies can use to reduce carbon footprint, improve sustainability and increase business efficiency, while also keeping costs down ...

July 07, 2020

While the adoption of continuous integration (CI) is on the rise, software engineering teams are unable to take a zero-tolerance approach to software failures, costing enterprise organizations billions annually, according to a quantitative study conducted by Undo and a Cambridge Judge Business School MBA project ...

June 25, 2020

I've had the opportunity to work with a number of organizations embarking on their AIOps journey. I always advise them to start by evaluating their needs and the possibilities AIOps can bring to them through five different levels of AIOps maturity. This is a strategic approach that allows enterprises to achieve complete automation for long-term success ...

June 24, 2020

Sumo Logic recently commissioned an independent market research study to understand the industry momentum behind continuous intelligence — and the necessity for digital organizations to embrace a cloud-native, real-time continuous intelligence platform to support the speed and agility of business for faster decision-making, optimizing security, driving new innovation and delivering world-class customer experiences. Some of the key findings include ...

June 23, 2020

When it comes to viruses, it's typically those of the computer/digital variety that IT is concerned about. But with the ongoing pandemic, IT operations teams are on the hook to maintain business functions in the midst of rapid and massive change. One of the biggest challenges for businesses is the shift to remote work at scale. Ensuring that they can continue to provide products and services — and satisfy their customers — against this backdrop is challenging for many ...

June 22, 2020

Teams tasked with developing and delivering software are under pressure to balance the business imperative for speed with high customer expectations for quality. In the course of trying to achieve this balance, engineering organizations rely on a variety of tools, techniques and processes. The 2020 State of Software Quality report provides a snapshot of the key challenges organizations encounter when it comes to delivering quality software at speed, as well as how they are approaching these hurdles. This blog introduces its key findings ...

June 18, 2020

For IT teams, run-the-business, commodity areas such as employee help desks, device support and communication platforms are regularly placed in the crosshairs for cost takeout, but these areas are also highly visible to employees. Organizations can improve employee satisfaction and business performance by building unified functions that are measured by employee experience rather than price. This approach will ultimately fund transformation, as well as increase productivity and innovation ...

June 17, 2020

In the agile DevOps framework, there is a vital piece missing; something that previous approaches to application development did well, but has since fallen by the wayside. That is, the post-delivery portion of the toolchain. Without continuous cloud optimization, the CI/CD toolchain still produces massive inefficiencies and overspend ...

June 16, 2020

The COVID-19 pandemic has exponentially accelerated digital transformation projects. To better understand where IT professionals are turning for help, we analyzed the online behaviors of IT decision-makers. Our research found an increase in demand for resources related to APM, microservices and dependence on cloud services ...

June 15, 2020

The rush to the public cloud has now slowed as organizations realized that it is not a "one size fits all" solution. The main issue is the lack of deep visibility into the performance of applications provided by the host. Our own research has recently revealed that 32% of public cloud resources are currently under-utilized, and without proper direction and guidance, this will remain the case ...