Skip to main content

8 Big Data Pain Points and How to Address Them - Part 2

Kamesh Pemmaraju

There are many pain points that companies experience when they try to deploy and run Big Data applications in their complex environments or use public or private cloud platforms, and there are also some best practices companies can use to address those pain points. Here are 5 more pain points and corresponding best practices.

Start with 8 Big Data Pain Points and How to Address Them - Part 1

PAIN POINT 4 – BIG DATA TOOLS EXPLOSION AND DEPLOYMENT COMPLEXITY

In the past decade, technologies such as Hadoop and MapReduce have become common frameworks to speed up processing of large datasets by breaking up them up into small fragments, running them in distributed farms of storage and processors clusters, and then collating the results back for consumption. Companies like Cloudera, Hortonworks and others have addressed many of the challenges associated with scheduling, cluster management, resource and data sharing, and performance tuning of these tools. And typically, such deployments are optimized to run on bare metal or on virtualization platforms like VMware, and therefore tend to remain in their own silo because of the complexity of deploying and operating these environments.

Modern big data use cases, however, need a whole bunch of other technologies and tools. You have Docker. You have Kubernetes. You have Spark. You have NoSQL Databases such as Cassandra and MongoDB. And when you get into machine learning you have several options.

Deploying Hadoop, which is quite complex, is one thing, arguably made relatively easy by companies like Cloudera and Hortonworks, but then if you need to deploy Cassandra or MongoDB, you have to put in effort to write scripts to deploy them. And depending on the target platform (bare metal, VMware, Microsoft), you will need to maintain and run multiple scripts. You then have to figure out how to network the Hadoop cluster with the Cassandra cluster and of course, inevitably, deal with DNS services, load balancers, firewalls, etc. Add other Big Data tools to be deployed, managed, and integrated, and you will begin to appreciate the challenge.

IT teams should address this challenge with a unifying platform that can not only deploy multiple Big Data tools and platforms from a curated "application and big data catalog," but also provide a way to virtualize all the underlying infrastructure resources along with an infrastructure-as-code framework via open API access This greatly simplifies the IT burden when it comes to provisioning the underlying infrastructure resources, and end users can simply deploy the tools they want and need with a single click and have the ability to use APIs to automate their deployment, provisioning, and configuration challenges.

PAIN POINT 5 – ONE BIG DATA CLUSTER DOESN'T ADDRESS ALL NEEDS

Organizations have diverse Big Data teams, production and R&D portfolios, and sometimes conflicting requirements for performance, data locality, cost, or specialized hardware resources. One single, standardized data cluster is not going to meet all of those needs. Companies will need to deploy multiple, independent Big Data clusters with possibly different underlying CPU, memory, and storage footprints. One cluster could be dedicated and fine-tuned for a Hadoop deployment with high local storage IOPS requirements, another may be running Spark jobs with more CPU and memory-bound configurations, and others like machine learning will need GPU infrastructure. Deploying and managing the complexity of such multiple diverse clusters will place a high operational overhead on the IT team, reducing their ability to respond quickly to Big Data user requests, and making it difficult to manage costs and maintain operational efficiency.

To address this pain point, the IT team should again have a unified orchestration/management platform and be able to set up logical business units that can be assigned to different Big Data teams. This way, each team gets full self-service capability within quota limits imposed by the IT staff, and each team can automatically deploy its own Big Data tools with a few clicks, independently of other teams.

PAIN POINT 6: SKYROCKETING IT OPERATIONS COSTS

Developing, deploying, and operating large-scale enterprise big data clusters can get complex, especially if it involves multiple sites, multiple teams, and diverse infrastructure, as we have seen. The operational overhead of these systems can be expensive and manually time-consuming. For example, IT operations teams still need to set up firewalls, load balancers, DNS services, and VPN services, to name a few. They still need to manage infrastructure operations such as physical host maintenance, disk additions/removals/replacements, and physical host additions/removals/replacements. They still need to do capacity planning, and they still need to monitor utilization, allocation, and performance of compute, storage, and networking.

IT teams should look for a solution that addresses this operational overhead through automation and the use of modern SaaS-based management portals that help the teams optimize sizing, perform predictive capacity planning, and implement seamless failure management.

PAIN POINT 7 – CONSISTENT POLICY-DRIVEN SECURITY AND CUSTOMIZATION REQUIREMENTS

Enterprises have policies around using their specifically hardened and approved gold images of operating systems. The operating systems often need to have security configurations, databases, and other management tools installed before they can be used. Running these on public cloud may not be allowed, or they may run very slowly.

The solution is to enable an on-premises data center image store where enterprises can create customized gold images. Using fine-grained RBAC, the IT team can share these images selectively with various development teams around the world based on the local security, regulatory, and performance requirements. The local Kubernetes deployments are then carried out using these gold images to provide the underlying infrastructure to run containers.

PAIN POINT 8 – DR STRATEGY FOR EDGE COMPUTING AND BIG DATA CLUSTERS

Any critical application and the data associated with it needs to be protected from natural disasters regardless of whether or not these apps are based on containers. None of the existing solutions provides an out-of-the-box disaster recovery feature for critical edge computing clusters or Big Data analytics applications. Customers are left to cobble together their own DR strategy.

As part of a platform's multi-site capabilities, IT teams should be able to perform remote data replication and disaster recovery between remote geographically-separated sites. This protects persistent data and databases used by these clusters.

Infrastructure management for Big Data projects can be extremely complex, but with centralized management of virtualized or cloud-based resources, it can be far easier.

Hot Topics

The Latest

Industry experts offer predictions on how AI will evolve and impact technology and business in 2025. Part 3 covers AI's impact on employees and their roles ...

Industry experts offer predictions on how AI will evolve and impact technology and business in 2025. Part 2 covers the challenges presented by AI, as well as solutions to those problems ...

In the final part of APMdigest's 2025 Predictions Series, industry experts offer predictions on how AI will evolve and impact technology and business in 2025 ...

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...

8 Big Data Pain Points and How to Address Them - Part 2

Kamesh Pemmaraju

There are many pain points that companies experience when they try to deploy and run Big Data applications in their complex environments or use public or private cloud platforms, and there are also some best practices companies can use to address those pain points. Here are 5 more pain points and corresponding best practices.

Start with 8 Big Data Pain Points and How to Address Them - Part 1

PAIN POINT 4 – BIG DATA TOOLS EXPLOSION AND DEPLOYMENT COMPLEXITY

In the past decade, technologies such as Hadoop and MapReduce have become common frameworks to speed up processing of large datasets by breaking up them up into small fragments, running them in distributed farms of storage and processors clusters, and then collating the results back for consumption. Companies like Cloudera, Hortonworks and others have addressed many of the challenges associated with scheduling, cluster management, resource and data sharing, and performance tuning of these tools. And typically, such deployments are optimized to run on bare metal or on virtualization platforms like VMware, and therefore tend to remain in their own silo because of the complexity of deploying and operating these environments.

Modern big data use cases, however, need a whole bunch of other technologies and tools. You have Docker. You have Kubernetes. You have Spark. You have NoSQL Databases such as Cassandra and MongoDB. And when you get into machine learning you have several options.

Deploying Hadoop, which is quite complex, is one thing, arguably made relatively easy by companies like Cloudera and Hortonworks, but then if you need to deploy Cassandra or MongoDB, you have to put in effort to write scripts to deploy them. And depending on the target platform (bare metal, VMware, Microsoft), you will need to maintain and run multiple scripts. You then have to figure out how to network the Hadoop cluster with the Cassandra cluster and of course, inevitably, deal with DNS services, load balancers, firewalls, etc. Add other Big Data tools to be deployed, managed, and integrated, and you will begin to appreciate the challenge.

IT teams should address this challenge with a unifying platform that can not only deploy multiple Big Data tools and platforms from a curated "application and big data catalog," but also provide a way to virtualize all the underlying infrastructure resources along with an infrastructure-as-code framework via open API access This greatly simplifies the IT burden when it comes to provisioning the underlying infrastructure resources, and end users can simply deploy the tools they want and need with a single click and have the ability to use APIs to automate their deployment, provisioning, and configuration challenges.

PAIN POINT 5 – ONE BIG DATA CLUSTER DOESN'T ADDRESS ALL NEEDS

Organizations have diverse Big Data teams, production and R&D portfolios, and sometimes conflicting requirements for performance, data locality, cost, or specialized hardware resources. One single, standardized data cluster is not going to meet all of those needs. Companies will need to deploy multiple, independent Big Data clusters with possibly different underlying CPU, memory, and storage footprints. One cluster could be dedicated and fine-tuned for a Hadoop deployment with high local storage IOPS requirements, another may be running Spark jobs with more CPU and memory-bound configurations, and others like machine learning will need GPU infrastructure. Deploying and managing the complexity of such multiple diverse clusters will place a high operational overhead on the IT team, reducing their ability to respond quickly to Big Data user requests, and making it difficult to manage costs and maintain operational efficiency.

To address this pain point, the IT team should again have a unified orchestration/management platform and be able to set up logical business units that can be assigned to different Big Data teams. This way, each team gets full self-service capability within quota limits imposed by the IT staff, and each team can automatically deploy its own Big Data tools with a few clicks, independently of other teams.

PAIN POINT 6: SKYROCKETING IT OPERATIONS COSTS

Developing, deploying, and operating large-scale enterprise big data clusters can get complex, especially if it involves multiple sites, multiple teams, and diverse infrastructure, as we have seen. The operational overhead of these systems can be expensive and manually time-consuming. For example, IT operations teams still need to set up firewalls, load balancers, DNS services, and VPN services, to name a few. They still need to manage infrastructure operations such as physical host maintenance, disk additions/removals/replacements, and physical host additions/removals/replacements. They still need to do capacity planning, and they still need to monitor utilization, allocation, and performance of compute, storage, and networking.

IT teams should look for a solution that addresses this operational overhead through automation and the use of modern SaaS-based management portals that help the teams optimize sizing, perform predictive capacity planning, and implement seamless failure management.

PAIN POINT 7 – CONSISTENT POLICY-DRIVEN SECURITY AND CUSTOMIZATION REQUIREMENTS

Enterprises have policies around using their specifically hardened and approved gold images of operating systems. The operating systems often need to have security configurations, databases, and other management tools installed before they can be used. Running these on public cloud may not be allowed, or they may run very slowly.

The solution is to enable an on-premises data center image store where enterprises can create customized gold images. Using fine-grained RBAC, the IT team can share these images selectively with various development teams around the world based on the local security, regulatory, and performance requirements. The local Kubernetes deployments are then carried out using these gold images to provide the underlying infrastructure to run containers.

PAIN POINT 8 – DR STRATEGY FOR EDGE COMPUTING AND BIG DATA CLUSTERS

Any critical application and the data associated with it needs to be protected from natural disasters regardless of whether or not these apps are based on containers. None of the existing solutions provides an out-of-the-box disaster recovery feature for critical edge computing clusters or Big Data analytics applications. Customers are left to cobble together their own DR strategy.

As part of a platform's multi-site capabilities, IT teams should be able to perform remote data replication and disaster recovery between remote geographically-separated sites. This protects persistent data and databases used by these clusters.

Infrastructure management for Big Data projects can be extremely complex, but with centralized management of virtualized or cloud-based resources, it can be far easier.

Hot Topics

The Latest

Industry experts offer predictions on how AI will evolve and impact technology and business in 2025. Part 3 covers AI's impact on employees and their roles ...

Industry experts offer predictions on how AI will evolve and impact technology and business in 2025. Part 2 covers the challenges presented by AI, as well as solutions to those problems ...

In the final part of APMdigest's 2025 Predictions Series, industry experts offer predictions on how AI will evolve and impact technology and business in 2025 ...

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...