The Essential Tools to Support Digital Transformation - Part 3
May 09, 2018
Share this

APMdigest asked experts from across the IT industry — from analysts and consultants to users and the top vendors — for their opinions on the essential tools to support digital transformation. Part 3 covers analytics, AI and machine learning.

Start with The Essential Tools to Support Digital Transformation - Part 1

Start with The Essential Tools to Support Digital Transformation - Part 2

Advanced IT Analytics (AIA)

While there are many critical areas of technology innovation currently evolving in IT, the most powerful and transformative are advanced analytic capabilities, often integrated with insights into service (application/infrastructure) interdependencies. What EMA calls advanced IT analytics (AIA), and many in the industry call "AIOps," is an arena of fast-paced innovation in many dimensions, with diverse options for investment, and benefits ranging from improved IT-to-business alignment, improved business performance, dramatic values in toolset consolidation and unifying IT, as well as core strengths in dramatic reductions in mean-time-to-repair, as just some examples. Whether AIA can properly be called a tool or not, it typically helps to assimilate many different toolsets into a new, cross-domain layer designed for proactive rather than reactive IT management and planning.
Dennis Drogseth
VP of Research, Enterprise Management Associates (EMA)

Artificial intelligence (AI)

Artificial intelligence (AI) is becoming a mission-critical tool to support digital transformation. New development platforms like cloud and microservices enable enterprises to reach new market opportunities faster. On the flip side, more than three-quarters of CIOs around the world believe these new applications are so complex that IT is becoming almost unmanageable. As many small teams work together, getting consistent end-to-end visibility is more challenging, but also more important. Many companies try to solve this problem by growing their operations team, leading to a higher time investment and eventually increased costs. When looking at the problem more closely, it becomes obvious that most time is spent in analyzing data in the context of the impact on the business. This is where artificial intelligence (AI) can help. AI-based systems can find the root cause of problems in milliseconds no matter how complex a system, ultimately resolving application problems before customers are impacted. The next step is to use AI-based virtual assistants, which understand natural language and can provide actionable answers to complex digital performance questions in real-time. And, by simplifying conversations that can be held over voice or chat, AI help expand the use of operational data beyond IT experts.
Alois Reitbauer
Chief Technology Strategist, Dynatrace

MACHINE LEARNING

The most important tool to support digital transformation is a modern, scalable, and fast data analytics platform with machine learning built-in. Unencumbered by legacy databases, digital economy companies disrupt traditional industries with agile approaches and modern, open analytical platforms to derive insight from heavy volumes of data right now — and not later after they have missed their opportunity. Traditional industry players are equally data driven, moving as quickly as they can to modernize their data warehouses and analytical stores and avoid disruption and minimize customer churn. Start-ups with fresh rounds of funding and 100-year old banks each understand a modern data analytical platform with machine learning built-in is imperative to digital transformation.
Jeff Healey
Senior Director of Vertica Product Marketing, Micro Focus

KPI ADVANCEMENT TOOLS

A company's ability to differentiate and win now rests largely on how expeditiously they can respond to changing business needs by rolling out high-performing, innovative online products and services. Businesses need highly productive development teams that excel across three areas: quality, velocity and efficiency. Development leaders need KPI advancement tools leveraging empirical data to guide smart decisions that drive improvements in all of these areas. Many organizations continue to rely heavily on mainframe processing. Therefore, digital transformation requires tools that go beyond just integrating the mainframe more fully into developer environments, to actually amplifying developer productivity on the platform.
Sam Knutson
VP of Product Management, Compuware

WORKSPACE ANALYTICS

The most important tool that an organization needs to drive digital transformation is access to workspace analytics. To improve the performance of its end users, an organization must have visibility into how issues experienced at the endpoint are impacting productivity. Analytics can link client-side end-user facing data regarding VDI sessions with the usage of guest resources within infrastructure environments. This collected data can then be tied back into the VDI session, presenting IT with telemetry they can then use to monitor, analyze and optimize endpoint performance within their end-user computing environments.
Simon Clephan
VP of Business Development and Strategic Alliances, IGEL

monitoring integration as a service (MIaaS)

Digital transformation has the tendency to create monitoring blind spots. You've got one foot in the cloud, one foot on prem. You're wading into DevOps and real-time analytics. You need something that's going to bring it all together for you. That's why I recommend a monitoring integration as a service (MIaaS) platform.
Moria Fredrickson
Director of Marketing, Blue Medora

Read The Essential Tools to Support Digital Transformation - Part 4, covering communication and collaboration.

Share this

The Latest

March 21, 2019

Achieving audit compliance within your IT ecosystem can be an iterative process, and it doesn't have to be compressed into the five days before the audit is due. Following is a four-step process I use to guide clients through the process of preparing for and successfully completing IT audits ...

March 20, 2019

Network performance issues come in all shapes and sizes, and can require vast amounts of time and resources to solve. Here are three examples of painful network performance issues you're likely to encounter this year, and how NPMD solutions can help you overcome them ...

March 19, 2019

"Scale up" versus "scale out" doesn't just apply to hardware investments, it also has an impact on product features. "Scale up" promotes buying the feature set you think you need now, then adding "feature modules" and licenses as you discover additional feature requirements are needed. Often as networks grow in size they also grow in complexity ...

March 18, 2019

Network Packet Brokers play a critical role in gaining visibility into new complex networks. They deliver the packet data and information IT and security teams need to identify problems, recognize security issues, and ensure overall network performance. However, not all Packet Brokers are created equal when it comes to scalability. Simply "scaling up" your network infrastructure at every growth point is a more complex and more expensive endeavor over time. Let's explore three ways the "scale up" approach to infrastructure growth impedes NetOps and security professionals (and the business as a whole) ...

March 15, 2019

Loyal users are the key to your service desk's success. Happy users want to use your services and they recommend your services in the organization. It takes time and effort to exceed user expectations, but doing so means keeping the promises we make to our users and being careful not to do too much without careful consideration for what's best for the organization and users ...

March 14, 2019

What's the difference between user satisfaction and user loyalty? How can you measure whether your users are satisfied and will keep buying from you? How much effort should you make to offer your users the ultimate experience? If you're a service provider, what matters in the end is whether users will keep coming back to you and will stay loyal ...

March 13, 2019

What if I said that a 95% reduction in the amount of IT noise, 99% reduction in ticket volume and 99% L1 resolution rate are not only possible, but that some of the largest, most complex enterprises in the world see these metrics in their environments every day, thanks to Artificial Intelligence (AI) and Machine Learning (ML)? Would you dismiss that as belonging to the realm of science fiction? ...

March 12, 2019
As a consumer, when you order products online, how do you expect them to get delivered? Some key requirements are: the product must arrive on time, well-packed, and ultimately must give you an easy gateway to return it if it is not as per your expectations. All this has been made possible via a single application. But what if this application doesn't function the way you want or cracks down mid-way, or probably leaks off information about you to some potential hackers? Technical uncertainty and digital chaos are the two double-edged swords dangling over this billion-dollar ecommerce market. Can Quality Assurance and Software Testing save application developers from this endless juggle? ...
March 11, 2019

Of those surveyed, 96% of organizations have a digital transformation strategy, with 57% approaching it as an enterprise-wide priority, with a clear emphasis on speed of business, costs, risk, and customer satisfaction, according to IDC’s Aligning IT Strategies and Business Expectations for Digital Transformation Success, sponsored by EasyVista ...

March 08, 2019

One of my ongoing areas of focus is analytics, AIOps, and the intersection with AI and machine learning more broadly. Within this space, sad to say, semantic confusion surrounding just what these terms mean echoes the confusions surrounding ITSM ...