The Essential Tools to Support Digital Transformation - Part 3
May 09, 2018
Share this

APMdigest asked experts from across the IT industry — from analysts and consultants to users and the top vendors — for their opinions on the essential tools to support digital transformation. Part 3 covers analytics, AI and machine learning.

Start with The Essential Tools to Support Digital Transformation - Part 1

Start with The Essential Tools to Support Digital Transformation - Part 2

Advanced IT Analytics (AIA)

While there are many critical areas of technology innovation currently evolving in IT, the most powerful and transformative are advanced analytic capabilities, often integrated with insights into service (application/infrastructure) interdependencies. What EMA calls advanced IT analytics (AIA), and many in the industry call "AIOps," is an arena of fast-paced innovation in many dimensions, with diverse options for investment, and benefits ranging from improved IT-to-business alignment, improved business performance, dramatic values in toolset consolidation and unifying IT, as well as core strengths in dramatic reductions in mean-time-to-repair, as just some examples. Whether AIA can properly be called a tool or not, it typically helps to assimilate many different toolsets into a new, cross-domain layer designed for proactive rather than reactive IT management and planning.
Dennis Drogseth
VP of Research, Enterprise Management Associates (EMA)

Artificial intelligence (AI)

Artificial intelligence (AI) is becoming a mission-critical tool to support digital transformation. New development platforms like cloud and microservices enable enterprises to reach new market opportunities faster. On the flip side, more than three-quarters of CIOs around the world believe these new applications are so complex that IT is becoming almost unmanageable. As many small teams work together, getting consistent end-to-end visibility is more challenging, but also more important. Many companies try to solve this problem by growing their operations team, leading to a higher time investment and eventually increased costs. When looking at the problem more closely, it becomes obvious that most time is spent in analyzing data in the context of the impact on the business. This is where artificial intelligence (AI) can help. AI-based systems can find the root cause of problems in milliseconds no matter how complex a system, ultimately resolving application problems before customers are impacted. The next step is to use AI-based virtual assistants, which understand natural language and can provide actionable answers to complex digital performance questions in real-time. And, by simplifying conversations that can be held over voice or chat, AI help expand the use of operational data beyond IT experts.
Alois Reitbauer
Chief Technology Strategist, Dynatrace

MACHINE LEARNING

The most important tool to support digital transformation is a modern, scalable, and fast data analytics platform with machine learning built-in. Unencumbered by legacy databases, digital economy companies disrupt traditional industries with agile approaches and modern, open analytical platforms to derive insight from heavy volumes of data right now — and not later after they have missed their opportunity. Traditional industry players are equally data driven, moving as quickly as they can to modernize their data warehouses and analytical stores and avoid disruption and minimize customer churn. Start-ups with fresh rounds of funding and 100-year old banks each understand a modern data analytical platform with machine learning built-in is imperative to digital transformation.
Jeff Healey
Senior Director of Vertica Product Marketing, Micro Focus

KPI ADVANCEMENT TOOLS

A company's ability to differentiate and win now rests largely on how expeditiously they can respond to changing business needs by rolling out high-performing, innovative online products and services. Businesses need highly productive development teams that excel across three areas: quality, velocity and efficiency. Development leaders need KPI advancement tools leveraging empirical data to guide smart decisions that drive improvements in all of these areas. Many organizations continue to rely heavily on mainframe processing. Therefore, digital transformation requires tools that go beyond just integrating the mainframe more fully into developer environments, to actually amplifying developer productivity on the platform.
Sam Knutson
VP of Product Management, Compuware

WORKSPACE ANALYTICS

The most important tool that an organization needs to drive digital transformation is access to workspace analytics. To improve the performance of its end users, an organization must have visibility into how issues experienced at the endpoint are impacting productivity. Analytics can link client-side end-user facing data regarding VDI sessions with the usage of guest resources within infrastructure environments. This collected data can then be tied back into the VDI session, presenting IT with telemetry they can then use to monitor, analyze and optimize endpoint performance within their end-user computing environments.
Simon Clephan
VP of Business Development and Strategic Alliances, IGEL

monitoring integration as a service (MIaaS)

Digital transformation has the tendency to create monitoring blind spots. You've got one foot in the cloud, one foot on prem. You're wading into DevOps and real-time analytics. You need something that's going to bring it all together for you. That's why I recommend a monitoring integration as a service (MIaaS) platform.
Moria Fredrickson
Director of Marketing, Blue Medora

Read The Essential Tools to Support Digital Transformation - Part 4, covering communication and collaboration.

Share this

The Latest

March 01, 2024

As organizations continue to navigate the complexities of the digital era, which has been marked by exponential advancements in AI and technology, the strategic deployment of modern, practical applications has become indispensable for sustaining competitive advantage and realizing business goals. The Info-Tech Research Group report, Applications Priorities 2024, explores the following five initiatives for emerging and leading-edge technologies and practices that can enable IT and applications leaders to optimize their application portfolio and improve on capabilities needed to meet the ambitions of their organizations ...

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...