Skip to main content

The Essential Tools to Support Digital Transformation - Part 3

APMdigest asked experts from across the IT industry — from analysts and consultants to users and the top vendors — for their opinions on the essential tools to support digital transformation. Part 3 covers analytics, AI and machine learning.

Start with The Essential Tools to Support Digital Transformation - Part 1

Start with The Essential Tools to Support Digital Transformation - Part 2

Advanced IT Analytics (AIA)

While there are many critical areas of technology innovation currently evolving in IT, the most powerful and transformative are advanced analytic capabilities, often integrated with insights into service (application/infrastructure) interdependencies. What EMA calls advanced IT analytics (AIA), and many in the industry call "AIOps," is an arena of fast-paced innovation in many dimensions, with diverse options for investment, and benefits ranging from improved IT-to-business alignment, improved business performance, dramatic values in toolset consolidation and unifying IT, as well as core strengths in dramatic reductions in mean-time-to-repair, as just some examples. Whether AIA can properly be called a tool or not, it typically helps to assimilate many different toolsets into a new, cross-domain layer designed for proactive rather than reactive IT management and planning.
Dennis Drogseth
VP of Research, Enterprise Management Associates (EMA)

Artificial intelligence (AI)

Artificial intelligence (AI) is becoming a mission-critical tool to support digital transformation. New development platforms like cloud and microservices enable enterprises to reach new market opportunities faster. On the flip side, more than three-quarters of CIOs around the world believe these new applications are so complex that IT is becoming almost unmanageable. As many small teams work together, getting consistent end-to-end visibility is more challenging, but also more important. Many companies try to solve this problem by growing their operations team, leading to a higher time investment and eventually increased costs. When looking at the problem more closely, it becomes obvious that most time is spent in analyzing data in the context of the impact on the business. This is where artificial intelligence (AI) can help. AI-based systems can find the root cause of problems in milliseconds no matter how complex a system, ultimately resolving application problems before customers are impacted. The next step is to use AI-based virtual assistants, which understand natural language and can provide actionable answers to complex digital performance questions in real-time. And, by simplifying conversations that can be held over voice or chat, AI help expand the use of operational data beyond IT experts.
Alois Reitbauer
Chief Technology Strategist, Dynatrace

MACHINE LEARNING

The most important tool to support digital transformation is a modern, scalable, and fast data analytics platform with machine learning built-in. Unencumbered by legacy databases, digital economy companies disrupt traditional industries with agile approaches and modern, open analytical platforms to derive insight from heavy volumes of data right now — and not later after they have missed their opportunity. Traditional industry players are equally data driven, moving as quickly as they can to modernize their data warehouses and analytical stores and avoid disruption and minimize customer churn. Start-ups with fresh rounds of funding and 100-year old banks each understand a modern data analytical platform with machine learning built-in is imperative to digital transformation.
Jeff Healey
Senior Director of Vertica Product Marketing, Micro Focus

KPI ADVANCEMENT TOOLS

A company's ability to differentiate and win now rests largely on how expeditiously they can respond to changing business needs by rolling out high-performing, innovative online products and services. Businesses need highly productive development teams that excel across three areas: quality, velocity and efficiency. Development leaders need KPI advancement tools leveraging empirical data to guide smart decisions that drive improvements in all of these areas. Many organizations continue to rely heavily on mainframe processing. Therefore, digital transformation requires tools that go beyond just integrating the mainframe more fully into developer environments, to actually amplifying developer productivity on the platform.
Sam Knutson
VP of Product Management, Compuware

WORKSPACE ANALYTICS

The most important tool that an organization needs to drive digital transformation is access to workspace analytics. To improve the performance of its end users, an organization must have visibility into how issues experienced at the endpoint are impacting productivity. Analytics can link client-side end-user facing data regarding VDI sessions with the usage of guest resources within infrastructure environments. This collected data can then be tied back into the VDI session, presenting IT with telemetry they can then use to monitor, analyze and optimize endpoint performance within their end-user computing environments.
Simon Clephan
VP of Business Development and Strategic Alliances, IGEL

monitoring integration as a service (MIaaS)

Digital transformation has the tendency to create monitoring blind spots. You've got one foot in the cloud, one foot on prem. You're wading into DevOps and real-time analytics. You need something that's going to bring it all together for you. That's why I recommend a monitoring integration as a service (MIaaS) platform.
Moria Fredrickson
Director of Marketing, Blue Medora

Read The Essential Tools to Support Digital Transformation - Part 4, covering communication and collaboration.

The Latest

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...

The Essential Tools to Support Digital Transformation - Part 3

APMdigest asked experts from across the IT industry — from analysts and consultants to users and the top vendors — for their opinions on the essential tools to support digital transformation. Part 3 covers analytics, AI and machine learning.

Start with The Essential Tools to Support Digital Transformation - Part 1

Start with The Essential Tools to Support Digital Transformation - Part 2

Advanced IT Analytics (AIA)

While there are many critical areas of technology innovation currently evolving in IT, the most powerful and transformative are advanced analytic capabilities, often integrated with insights into service (application/infrastructure) interdependencies. What EMA calls advanced IT analytics (AIA), and many in the industry call "AIOps," is an arena of fast-paced innovation in many dimensions, with diverse options for investment, and benefits ranging from improved IT-to-business alignment, improved business performance, dramatic values in toolset consolidation and unifying IT, as well as core strengths in dramatic reductions in mean-time-to-repair, as just some examples. Whether AIA can properly be called a tool or not, it typically helps to assimilate many different toolsets into a new, cross-domain layer designed for proactive rather than reactive IT management and planning.
Dennis Drogseth
VP of Research, Enterprise Management Associates (EMA)

Artificial intelligence (AI)

Artificial intelligence (AI) is becoming a mission-critical tool to support digital transformation. New development platforms like cloud and microservices enable enterprises to reach new market opportunities faster. On the flip side, more than three-quarters of CIOs around the world believe these new applications are so complex that IT is becoming almost unmanageable. As many small teams work together, getting consistent end-to-end visibility is more challenging, but also more important. Many companies try to solve this problem by growing their operations team, leading to a higher time investment and eventually increased costs. When looking at the problem more closely, it becomes obvious that most time is spent in analyzing data in the context of the impact on the business. This is where artificial intelligence (AI) can help. AI-based systems can find the root cause of problems in milliseconds no matter how complex a system, ultimately resolving application problems before customers are impacted. The next step is to use AI-based virtual assistants, which understand natural language and can provide actionable answers to complex digital performance questions in real-time. And, by simplifying conversations that can be held over voice or chat, AI help expand the use of operational data beyond IT experts.
Alois Reitbauer
Chief Technology Strategist, Dynatrace

MACHINE LEARNING

The most important tool to support digital transformation is a modern, scalable, and fast data analytics platform with machine learning built-in. Unencumbered by legacy databases, digital economy companies disrupt traditional industries with agile approaches and modern, open analytical platforms to derive insight from heavy volumes of data right now — and not later after they have missed their opportunity. Traditional industry players are equally data driven, moving as quickly as they can to modernize their data warehouses and analytical stores and avoid disruption and minimize customer churn. Start-ups with fresh rounds of funding and 100-year old banks each understand a modern data analytical platform with machine learning built-in is imperative to digital transformation.
Jeff Healey
Senior Director of Vertica Product Marketing, Micro Focus

KPI ADVANCEMENT TOOLS

A company's ability to differentiate and win now rests largely on how expeditiously they can respond to changing business needs by rolling out high-performing, innovative online products and services. Businesses need highly productive development teams that excel across three areas: quality, velocity and efficiency. Development leaders need KPI advancement tools leveraging empirical data to guide smart decisions that drive improvements in all of these areas. Many organizations continue to rely heavily on mainframe processing. Therefore, digital transformation requires tools that go beyond just integrating the mainframe more fully into developer environments, to actually amplifying developer productivity on the platform.
Sam Knutson
VP of Product Management, Compuware

WORKSPACE ANALYTICS

The most important tool that an organization needs to drive digital transformation is access to workspace analytics. To improve the performance of its end users, an organization must have visibility into how issues experienced at the endpoint are impacting productivity. Analytics can link client-side end-user facing data regarding VDI sessions with the usage of guest resources within infrastructure environments. This collected data can then be tied back into the VDI session, presenting IT with telemetry they can then use to monitor, analyze and optimize endpoint performance within their end-user computing environments.
Simon Clephan
VP of Business Development and Strategic Alliances, IGEL

monitoring integration as a service (MIaaS)

Digital transformation has the tendency to create monitoring blind spots. You've got one foot in the cloud, one foot on prem. You're wading into DevOps and real-time analytics. You need something that's going to bring it all together for you. That's why I recommend a monitoring integration as a service (MIaaS) platform.
Moria Fredrickson
Director of Marketing, Blue Medora

Read The Essential Tools to Support Digital Transformation - Part 4, covering communication and collaboration.

The Latest

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...