Skip to main content

Q&A: Gartner Talks About AIOps - Part 1

In APMdigest's exclusive interview, Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and how it will impact ITOA (IT Operations Analytics) and APM (Application Performance Management).

APM: For the readers who are unfamiliar, what is AIOps?

CF: Algorithmic IT operations (AIOps) platforms utilize big data, modern machine learning and other advanced analytics technologies to directly and indirectly enhance all primary IT operations functions with proactive, personal and dynamic insight. AIOps platforms enable the concurrent use of multiple data sources, data collection methods, analytical technologies (real-time and deep) and presentation technologies. AIOps platforms represent the evolving and expanded use of technologies previously categorized as IT operations analytics (ITOA).

APM: What advantages can IT Ops gain from AIOps?

CF: I find it is really useful when looking at how you or your operations team can take advantage of predictive, machine learning-enhanced tools to think in terms of how they assist and/or augment your current capabilities. The ideal state or ultimate goal of an AIOps investment is a platform that is capable of continuously, proactively generating insights that are used in support any number of internal and external customers. While AIOps has tremendous potential to deliver on use cases that stretch well beyond core IT operations functions, to date we've seen enterprises get real, tangible value using AIOps platforms to:

■ Make the holy grail vision of a "single pane of glass" a reality across multiple technology stacks and generations most often in support of root cause analysis

■ Rapidly support new digital business initiatives and their accompanying use of the latest disruptive technologies (containers, microservices, IoT, etc.) at scale

■ Achieve the long sought after goal of automated, sustainable, scalable, and most importantly, useful event correlation that works to reduce alert noise/fatigue and speed diagnosis

APM: How does AIOps enable you to get more from your existing data?

CF: To put it as simply as possible, AIOps provides for many a more practical way to get multiple data sources into one platform and apply multiple analytical technologies to that data in an automated fashion to discover the relationships and patterns that lie undiscovered in previously isolated data. This is particularly true in the case of utilizing IT operational data in combination with data generated by applications or infrastructure normally outside of IT's operational visibility. To be clear, this is not to say that this has somehow not been possible previously, of course it has been, but in most cases prior to AIOps, it was cost prohibitive or technically challenging to do so.

APM: Does AIOPs augment or support APM?

CF: Currently AIOps is typically used to supplement APM use cases and/or tooling by providing a much more practical and in some cases cost effective means of filling in the gap between what data is being collected directly by the APM tool and the rest of the supporting applications, infrastructure, security, service, customer/business operational, and configuration data that is rarely directly integrated or utilized in APM tools. This is due in large part to AIOps' emphasis on providing the ability to continuously deliver insights from multiple data sources regardless of the mechanism used to collect the data.

APM: Does AIOps support DevOps?

CF: DevOps teams and particularly application developers gravitate to AIOps tools naturally in their search for data-driven (as opposed to instrumentation-driven) insight to their particular application's behavior.

Many DevOps teams also cite the "democratic" or "agnostic" or "open" nature of AIOps tools that from day one are assumed to be integrated with "something or multiple somethings" to deliver combinative value as well as their genuine support of experimentation and creative use of data for purposes beyond problem solving as reasons for using AIOps tools.

Most frequently we see DevOps teams using AIOps to monitor application and infrastructure performance, troubleshoot issues, and provide dashboards and reporting across entire toolchains that consist of multiple tools used in both development (CI, Test, ARA) and operations (monitoring, CD/Release/Configuration).

Read Gartner Talks About AIOps - Part 2

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

Q&A: Gartner Talks About AIOps - Part 1

In APMdigest's exclusive interview, Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and how it will impact ITOA (IT Operations Analytics) and APM (Application Performance Management).

APM: For the readers who are unfamiliar, what is AIOps?

CF: Algorithmic IT operations (AIOps) platforms utilize big data, modern machine learning and other advanced analytics technologies to directly and indirectly enhance all primary IT operations functions with proactive, personal and dynamic insight. AIOps platforms enable the concurrent use of multiple data sources, data collection methods, analytical technologies (real-time and deep) and presentation technologies. AIOps platforms represent the evolving and expanded use of technologies previously categorized as IT operations analytics (ITOA).

APM: What advantages can IT Ops gain from AIOps?

CF: I find it is really useful when looking at how you or your operations team can take advantage of predictive, machine learning-enhanced tools to think in terms of how they assist and/or augment your current capabilities. The ideal state or ultimate goal of an AIOps investment is a platform that is capable of continuously, proactively generating insights that are used in support any number of internal and external customers. While AIOps has tremendous potential to deliver on use cases that stretch well beyond core IT operations functions, to date we've seen enterprises get real, tangible value using AIOps platforms to:

■ Make the holy grail vision of a "single pane of glass" a reality across multiple technology stacks and generations most often in support of root cause analysis

■ Rapidly support new digital business initiatives and their accompanying use of the latest disruptive technologies (containers, microservices, IoT, etc.) at scale

■ Achieve the long sought after goal of automated, sustainable, scalable, and most importantly, useful event correlation that works to reduce alert noise/fatigue and speed diagnosis

APM: How does AIOps enable you to get more from your existing data?

CF: To put it as simply as possible, AIOps provides for many a more practical way to get multiple data sources into one platform and apply multiple analytical technologies to that data in an automated fashion to discover the relationships and patterns that lie undiscovered in previously isolated data. This is particularly true in the case of utilizing IT operational data in combination with data generated by applications or infrastructure normally outside of IT's operational visibility. To be clear, this is not to say that this has somehow not been possible previously, of course it has been, but in most cases prior to AIOps, it was cost prohibitive or technically challenging to do so.

APM: Does AIOPs augment or support APM?

CF: Currently AIOps is typically used to supplement APM use cases and/or tooling by providing a much more practical and in some cases cost effective means of filling in the gap between what data is being collected directly by the APM tool and the rest of the supporting applications, infrastructure, security, service, customer/business operational, and configuration data that is rarely directly integrated or utilized in APM tools. This is due in large part to AIOps' emphasis on providing the ability to continuously deliver insights from multiple data sources regardless of the mechanism used to collect the data.

APM: Does AIOps support DevOps?

CF: DevOps teams and particularly application developers gravitate to AIOps tools naturally in their search for data-driven (as opposed to instrumentation-driven) insight to their particular application's behavior.

Many DevOps teams also cite the "democratic" or "agnostic" or "open" nature of AIOps tools that from day one are assumed to be integrated with "something or multiple somethings" to deliver combinative value as well as their genuine support of experimentation and creative use of data for purposes beyond problem solving as reasons for using AIOps tools.

Most frequently we see DevOps teams using AIOps to monitor application and infrastructure performance, troubleshoot issues, and provide dashboards and reporting across entire toolchains that consist of multiple tools used in both development (CI, Test, ARA) and operations (monitoring, CD/Release/Configuration).

Read Gartner Talks About AIOps - Part 2

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...