Q&A: Gartner Talks About AIOps - Part 1
May 09, 2017
Share this

In APMdigest's exclusive interview, Colin Fletcher, Research Director at Gartner, talks about Algorithmic IT Operations (AIOps) and how it will impact ITOA (IT Operations Analytics) and APM (Application Performance Management).

APM: For the readers who are unfamiliar, what is AIOps?

CF: Algorithmic IT operations (AIOps) platforms utilize big data, modern machine learning and other advanced analytics technologies to directly and indirectly enhance all primary IT operations functions with proactive, personal and dynamic insight. AIOps platforms enable the concurrent use of multiple data sources, data collection methods, analytical technologies (real-time and deep) and presentation technologies. AIOps platforms represent the evolving and expanded use of technologies previously categorized as IT operations analytics (ITOA).

APM: What advantages can IT Ops gain from AIOps?

CF: I find it is really useful when looking at how you or your operations team can take advantage of predictive, machine learning-enhanced tools to think in terms of how they assist and/or augment your current capabilities. The ideal state or ultimate goal of an AIOps investment is a platform that is capable of continuously, proactively generating insights that are used in support any number of internal and external customers. While AIOps has tremendous potential to deliver on use cases that stretch well beyond core IT operations functions, to date we've seen enterprises get real, tangible value using AIOps platforms to:

■ Make the holy grail vision of a "single pane of glass" a reality across multiple technology stacks and generations most often in support of root cause analysis

■ Rapidly support new digital business initiatives and their accompanying use of the latest disruptive technologies (containers, microservices, IoT, etc.) at scale

■ Achieve the long sought after goal of automated, sustainable, scalable, and most importantly, useful event correlation that works to reduce alert noise/fatigue and speed diagnosis

APM: How does AIOps enable you to get more from your existing data?

CF: To put it as simply as possible, AIOps provides for many a more practical way to get multiple data sources into one platform and apply multiple analytical technologies to that data in an automated fashion to discover the relationships and patterns that lie undiscovered in previously isolated data. This is particularly true in the case of utilizing IT operational data in combination with data generated by applications or infrastructure normally outside of IT's operational visibility. To be clear, this is not to say that this has somehow not been possible previously, of course it has been, but in most cases prior to AIOps, it was cost prohibitive or technically challenging to do so.

APM: Does AIOPs augment or support APM?

CF: Currently AIOps is typically used to supplement APM use cases and/or tooling by providing a much more practical and in some cases cost effective means of filling in the gap between what data is being collected directly by the APM tool and the rest of the supporting applications, infrastructure, security, service, customer/business operational, and configuration data that is rarely directly integrated or utilized in APM tools. This is due in large part to AIOps' emphasis on providing the ability to continuously deliver insights from multiple data sources regardless of the mechanism used to collect the data.

APM: Does AIOps support DevOps?

CF: DevOps teams and particularly application developers gravitate to AIOps tools naturally in their search for data-driven (as opposed to instrumentation-driven) insight to their particular application's behavior.

Many DevOps teams also cite the "democratic" or "agnostic" or "open" nature of AIOps tools that from day one are assumed to be integrated with "something or multiple somethings" to deliver combinative value as well as their genuine support of experimentation and creative use of data for purposes beyond problem solving as reasons for using AIOps tools.

Most frequently we see DevOps teams using AIOps to monitor application and infrastructure performance, troubleshoot issues, and provide dashboards and reporting across entire toolchains that consist of multiple tools used in both development (CI, Test, ARA) and operations (monitoring, CD/Release/Configuration).

Read Gartner Talks About AIOps - Part 2

Share this

The Latest

June 29, 2022

When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share ...

June 27, 2022

A new study by OpsRamp on the state of the Managed Service Providers (MSP) market concludes that MSPs face a market of bountiful opportunities but must prepare for this growth by embracing complex technologies like hybrid cloud management, root cause analysis and automation ...

June 27, 2022

Hybrid work adoption and the accelerated pace of digital transformation are driving an increasing need for automation and site reliability engineering (SRE) practices, according to new research. In a new survey almost half of respondents (48.2%) said automation is a way to decrease Mean Time to Resolution/Repair (MTTR) and improve service management ...

June 23, 2022

Digital businesses don't invest in monitoring for monitoring's sake. They do it to make the business run better. Every dollar spent on observability — every hour your team spends using monitoring tools or responding to what they reveal — should tie back directly to business outcomes: conversions, revenues, brand equity. If they don't? You might be missing the forest for the trees ...

June 22, 2022

Every day, companies are missing customer experience (CX) "red flags" because they don't have the tools to observe CX processes or metrics. Even basic errors or defects in automated customer interactions are left undetected for days, weeks or months, leading to widespread customer dissatisfaction. In fact, poor CX and digital technology investments are costing enterprises billions of dollars in lost potential revenue ...

June 21, 2022

Organizations are moving to microservices and cloud native architectures at an increasing pace. The primary incentive for these transformation projects is typically to increase the agility and velocity of software release and product innovation. These dynamic systems, however, are far more complex to manage and monitor, and they generate far higher data volumes ...

June 16, 2022

Global IT teams adapted to remote work in 2021, resolving employee tickets 23% faster than the year before as overall resolution time for IT tickets went down by 7 hours, according to the Freshservice Service Management Benchmark Report from Freshworks ...

June 15, 2022

Once upon a time data lived in the data center. Now data lives everywhere. All this signals the need for a new approach to data management, a next-gen solution ...

June 14, 2022

Findings from the 2022 State of Edge Messaging Report from Ably and Coleman Parkes Research show that most organizations (65%) that have built edge messaging capabilities in house have experienced an outage or significant downtime in the last 12-18 months. Most of the current in-house real-time messaging services aren't cutting it ...

June 13, 2022
Today's users want a complete digital experience when dealing with a software product or system. They are not content with the page load speeds or features alone but want the software to perform optimally in an omnichannel environment comprising multiple platforms, browsers, devices, and networks. This calls into question the role of load testing services to check whether the given software under testing can perform optimally when subjected to peak load ...