How Hyperautomation Builds Steam and Breaks Down IT Silos
March 15, 2021

Marcus Rebelo
Resolve

Share this

Hyperautomation topped Gartner's recent list of Top 10 Strategic Technology Trends, but is this just another new buzzword to further complicate our increasingly complex IT world?

Over the last decade, many IT teams have unknowingly implemented various forms of hyperautomation. By orchestrating more advanced automated processes and workflows, they've essentially cracked the code on this trend already. But what exactly do we mean by hyperautomation?

Gartner describes business-driven hyperautomation as: "an approach in which organizations rapidly identify, vet and automate as many approved business and IT processes as possible through a disciplined approach. Hyperautomation involves the orchestrated use of multiple technologies, tools or platforms (inclusive of, but not limited to, AI, machine learning, event-driven software architecture, RPA, iPaaS, packaged software and other types of decision, process and/or task automation tools)."

So, what's changed that would cause Gartner to introduce this new term now? We believe the answer lies in the ability to incorporate more advanced, newer technologies into the automation toolchain today — namely artificial intelligence, machine learning, and natural language processing, along with advanced analytics and data mining, which leverage all of the above. In the coming year, we'll see hyperautomation further evolve, building momentum, and contributing to the inevitable erosion of silos in enterprise IT.

Improving Digital Experience Demands Hyperautomation

Regardless of the name, hyperautomation's capacity to integrate and orchestrate various technologies is here to stay. Ultimately, it highlights the fact that siloed IT functions are being relegated to the IT graveyard. Like it or not, the needs of our in-house users and customers alike demand that all of our tools work together to serve broader, strategic business objectives — a fact that has been further amplified by the pandemic.

When all your systems are interoperative, independent silos are not just unnecessary, they impede business objectives. The widespread adoption of APIs is indicative of this drive toward interoperability. Further, Gartner estimates that over 70% of commercial enterprises have dozens of hyperautomation initiatives underway. Unfortunately, many of these will likely languish or fail because they're siloed, lack alignment to business outcomes, or overlap with other efforts. This results in more technical debt, unsustainable IT architectures, and data issues.

Hyperautomation, by default, is starting to break through the silo walls, building incremental connections between them, and in doing so, improving overall capabilities. While it will take years before siloed architectures fade for good, hyperautomation is moving in the right direction.

Hyperautomation in Action

To gain a better understanding of how hyperautomation is already in play for many enterprise IT teams, let's look at a few examples.

Combining intelligent automation with common chat tools like Slack or Microsoft Teams delivers valuable self-service capabilities, allowing end users to perform simple tasks on their own, like resetting passwords, or more complex ones, like interactive, multi-step PC troubleshooting. A more sophisticated example might be server provisioning, which would incorporate additional steps, like automating entitlement checks.

To support these types of hyperautomation use cases, service desk teams tie chat tools into a backend system that permits the actions to occur, plus another system that has the ability to perform the automated actions on behalf of the user. Where there are multiple chat tools deployed in an organization, capabilities can be deployed across all of them with a robust orchestrator on the back end. The end user never knows whether there are two or ten different tools involved in capturing, approving, executing, and responding to their request. Better yet, the automated processes can be structured in such a way that corporate compliance and governance standards are enforced at every turn.

For organizations with multiple automation tools — usually requiring different skillsets — hyperautomation can unify this ecosystem and enable these tools to seamlessly interact with one another to execute end-to-end processes autonomously. This eliminates the time consuming, labor-intensive, baton-passing between departments to complete certain responsibilities, representing a significant savings in costs and man hours.

Let's also explore the chain of custody for new applications. In most organizations, DevOps has its own set of tools to spin up new applications in the development environment. When a new application is deployed, one engineer might run some scripts to tie it into the domain and bring it online, ensure it is patched, and perform post-deployment testing activities.

Then a security engineer might implement some anti-malware tools and confirm that the application meets the corporate build and hardening standards.

Finally, post-deployment, another team might be tasked with keeping the application up and running, tracking and maintaining change requests, and managing configuration items, along with all of their associated relationships.

Each of the users described above would likely have their own scripts and automation tools to complete their part of the deployment process. With hyperautomation, the task-based automation tools are connected by one master orchestrator, which transforms disparate steps into a seamless, unified process.

Overcoming the Challenges of Hyperautomation

The most obvious challenge to surmount with hyperautomation: no one wants to give up their walled garden. However, it's a process that occurs incrementally where one brick at a time is removed. With each brick, people gain productivity and trust in hyperautomation, and every tool becomes more valuable by extension.

Who stands to benefit? Everyone — regardless of whether you look after the network, service desk, databases, security, or systems, you'll get time back in your day. You're also going to benefit from better quality of service scores from the users that you support.

Determining which processes to target with hyperautomation can also be a challenge. The first step is to identify the most time-consuming, repetitive processes in your organization and then balance that against the complexity to automate those processes. Pick the low hanging fruit first — prioritize some processes that can be easily automated to get quick wins, then progress to the more complex use cases, or those that are less frequent but consume significant resources.

A clearly developed strategy for hyperautomation and those early quick wins will secure buy-in and investment in additional initiatives. Starting with simple ties between tools and processes brings quick value and trust, which opens up increasingly more opportunity to hyperautomate more complex processes much faster. The business benefits snowball from there.

Hyperautomation has the potential to deliver real and meaningful ROI over the coming months and years, as well as transforming the way we approach IT operations forever.

Marcus Rebelo is Director of Sales Engineering, Americas, at Resolve
Share this

The Latest

November 28, 2022

Many have assumed that the mainframe is a dying entity, but instead, a mainframe renaissance is underway. Despite this notion, we are ushering in a future of more strategic investments, increased capacity, and leading innovations ...

November 22, 2022

Most (85%) consumers shop online or via a mobile app, with 59% using these digital channels as their primary holiday shopping channel, according to the Black Friday Consumer Report from Perforce Software. As brands head into a highly profitable time of year, starting with Black Friday and Cyber Monday, it's imperative development teams prepare for peak traffic, optimal channel performance, and seamless user experiences to retain and attract shoppers ...

November 21, 2022

From staffing issues to ineffective cloud strategies, NetOps teams are looking at how to streamline processes, consolidate tools, and improve network monitoring. What are some best practices that can help achieve this? Let's dive into five ...

November 18, 2022

On November 1, Taylor Swift announced the Eras Tour ... the whole world is now standing in the same virtual queue, and even the most durable cloud architecture can't handle this level of deluge ...

November 17, 2022

OpenTelemetry, a collaborative open source observability project, has introduced a new network protocol that addresses the infrastructure management headache, coupled with collector configuration options to filter and reduce data volume ...

November 16, 2022

A unified view of digital infrastructure is essential for IT teams that must improve the digital user experience while boosting overall organizational productivity, according to a survey of IT managers in the United Arab Emirates (UAE), from Riverbed and market research firm IDC ...

November 15, 2022

Building the visibility infrastructure to make cloud networks observable is a complex technical challenge. But with careful planning and a few strategic decisions, it's possible to appropriately design, set up and manage visibility solutions for the cloud ...

November 14, 2022

According to a recent IT at Work: 2022 and Beyond study, there have been a few silver linings to the pandemic ... The study revealed some intriguing trends, which will be discussed in turn ...

November 09, 2022

The absence of topology can be a key inhibitor for AIOps tools, creating blind spots for AIOps as they only have access to event data. A topology, an IT service model, or a dependency map is a real-time picture of tools and services that are connected and dependent on each other to deliver an IT service ...

November 08, 2022

A modern data stack is a suite of technologies and apps built specifically to funnel data into an organization, transform it into actionable data, build a plan for acting on that data, and then implement that plan. The majority of modern data stacks are built on cloud-based services, composed of low- and no-code tools that enable a variety of groups within an organization to explore and use their data. Read on to learn how to optimize your data stack ...