Using Machine Learning Analytics to Deliver Service Levels
September 21, 2016

Jerry Melnick
SIOS Technology

Share this

While the layers of abstraction created in virtualized environments afford numerous advantages, they can also obscure how the virtual resources are best allocated and how physical resources are performing. This can make maintaining optimal application performance a never-ending exercise in trial-and-error.

This post highlights some of the challenges encountered when using traditional monitoring and analytics tools, and describes how machine learning, as a next-generation analytics platform, provides a better way to meet SLAs by finding and fixing issues before they become performance problems. A future post will describe how machine learning analytics can also be used to allocate resources for optimal performance and cost-saving efficiency.

Most IT departments identify performance problems with tools that monitor a variety of discrete events against preset thresholds. For example they set a specific threshold for CPU utilization. Whenever that threshold is exceeded, the tool fires off alerts. But the use of thresholds presents several challenges. They do not account for the interrelated nature of resources in virtualized environments, where a change to or in one can have a significant impact on another. Such interrelationships exist both within and across silos. Without a complete understanding of the environment across silos, users of threshold-based tools frequently discover that their attempts to solve a problem have simply moved it to a different silo.

Thresholds often generate "alert storms" of meaningless data and miss important correlations that might indicate a severe problem exists. They are ineffective in detecting the symptoms of subtle issues that may indicate a significant imminent problem such as "noisy neighbors" or datastore latency issues. These subtle issues may not exceed a threshold related to the root cause or may exceed a threshold in short, random intervals, producing alerts that are frequently lost amid the "noise" of alert storms.

Even the so-called dynamic thresholds cannot accommodate the constant change in dynamic environments and, as a result, require significant ongoing IT intervention. And finally, while they may alert IT to an issue, they rarely provide sufficiently actionable information for resolving it. The exponential growth in the size and complexity of virtual environments has outstripped the ability of IT staff to set, manage, and continuously adjust threshold-based tools effectively. The time for an automated solution has come.

Advanced machine learning-based analytics software overcomes these and other challenges by continuously learning the many complex behaviors and interactions among interrelated objects – CPU, storage, network, applications – across the infrastructure. Unlike threshold-based solutions, this growing knowledge enables machine learning-based IT analytics solutions to provide a highly accurate means of identifying the root cause(s) of performance problems and making specific recommendations for resolving them cost-effectively.

This ability to aggregate, normalize, and then correlate and analyze hundreds of thousands of data points from different monitoring and management systems enable machine learning analytics solutions to transform massive volumes of data into meaningful insights across applications, servers and hosts, and storage and network infrastructures.

As it gathers and analyzes this wealth of data, the MLA system learns what constitutes normal behaviors, and it is this baseline that gives the system the ability to detect anomalies and find root causes automatically.

In addition to identifying root causes, advance machine learning based analytics solutions are able to simulate and predict the impact of making certain changes in resources and their allocations, which can be particularly useful for optimizing resource utilization and planning for expansion. This capability can also be useful for assessing if there is adequate capacity to handle a partial or complete failover. And these are topics worthy of a deeper dive in a future post.

Jerry Melnick is President and CEO of SIOS Technology.

Jerry Melnick is President and CEO of SIOS Technology
Share this

The Latest

May 21, 2019

Findings of the Digital Employee Experience survey from VMware show correlation between enabling employees with a positive digital experience (i.e., device choice/flexibility, seamless access to apps, remote work capabilities) and an organization's competitive position, revenue growth and employee sentiment ...

May 20, 2019

In today's competitive landscape, businesses must have the ability and process in place to face new challenges and find ways to successfully tackle them in a proactive manner. For years, this has been placed on the shoulders of DevOps teams within IT departments. But, as automation takes over manual intervention to increase speed and efficiency, these teams are facing what we know as IT digitization. How has this changed the way companies function over the years, and what do we have to look forward to in the coming years? ...

May 16, 2019

Although the vast majority of IT organizations have implemented a broad variety of systems and tools to modernize, simplify and streamline data center operations, many are still burdened by inefficiencies, security risks and performance gaps in their IT infrastructure as well as the excessive time it takes to manage legacy infrastructure, according to the State of IT Transformation, a report from Datrium ...

May 15, 2019

When it comes to network visibility, there are a lot of discussions about packet broker technology and the various features these solutions provide to network architects and IT managers. Packet brokers allow organizations to aggregate the data required for a variety of monitoring solutions including network performance monitoring and diagnostic (NPMD) platforms and unified threat management (UTM) appliances. But, when it comes to ensuring these solutions provide the insights required by NetOps and security teams, IT can spend an exorbitant amount of time dealing with issues around adds, moves and changes. This can have a dramatic impact on budgets and tool availability. Why does this happen? ...

May 14, 2019

Data may be pouring into enterprises but IT professionals still find most of it stuck in siloed departments and weeks away from being able to drive any valued action. Coupled with the ongoing concerns over security responsiveness, IT teams have to push aside other important performance-oriented data in order to ensure security data, at least, gets prominent attention. A new survey by Ivanti shows the disconnect between enterprise departments struggling to improve operations like automation while being challenged with a siloed structure and a data onslaught ...

May 13, 2019

A subtle, deliberate shift has occurred within the software industry which, at present, only the most innovative organizations have seized upon for competitive advantage. Although primarily driven by Artificial Intelligence (AI), this transformation strikes at the core of the most pervasive IT resources including cloud computing and predictive analytics ...

May 09, 2019

When asked who is mandated with developing and delivering their organization's digital competencies, 51% of respondents say their IT departments have a leadership role. The critical question is whether IT departments are prepared to take on a leadership role in which collaborating with other functions and disseminating knowledge and digital performance data are requirements ...

May 08, 2019

The Economist Intelligence Unit just released a new study commissioned by Riverbed that explores nine digital competencies that help organizations improve their digital performance and, ultimately, achieve their objectives. Here's a brief summary of 7 key research findings you'll find covered in detail in the report ...

May 07, 2019

Today, the overall customer scenario has digitally transformed and practically there is no limitation to the ways in which the target customers can be reached. These opportunities are throwing multiple challenges for brands and enterprises, and one of the prominent ones is to ensure Omni Channel experience for customers ...

May 06, 2019

Most businesses (92 percent of respondents) see the potential value of data and 36 percent are already monetizing their data, according to the Global Data Protection Index from Dell EMC. While this acknowledgement is positive, however, most respondents are struggling to properly protect their data ...