Using Machine Learning Analytics to Deliver Service Levels
September 21, 2016

Jerry Melnick
SIOS Technology

Share this

While the layers of abstraction created in virtualized environments afford numerous advantages, they can also obscure how the virtual resources are best allocated and how physical resources are performing. This can make maintaining optimal application performance a never-ending exercise in trial-and-error.

This post highlights some of the challenges encountered when using traditional monitoring and analytics tools, and describes how machine learning, as a next-generation analytics platform, provides a better way to meet SLAs by finding and fixing issues before they become performance problems. A future post will describe how machine learning analytics can also be used to allocate resources for optimal performance and cost-saving efficiency.

Most IT departments identify performance problems with tools that monitor a variety of discrete events against preset thresholds. For example they set a specific threshold for CPU utilization. Whenever that threshold is exceeded, the tool fires off alerts. But the use of thresholds presents several challenges. They do not account for the interrelated nature of resources in virtualized environments, where a change to or in one can have a significant impact on another. Such interrelationships exist both within and across silos. Without a complete understanding of the environment across silos, users of threshold-based tools frequently discover that their attempts to solve a problem have simply moved it to a different silo.

Thresholds often generate "alert storms" of meaningless data and miss important correlations that might indicate a severe problem exists. They are ineffective in detecting the symptoms of subtle issues that may indicate a significant imminent problem such as "noisy neighbors" or datastore latency issues. These subtle issues may not exceed a threshold related to the root cause or may exceed a threshold in short, random intervals, producing alerts that are frequently lost amid the "noise" of alert storms.

Even the so-called dynamic thresholds cannot accommodate the constant change in dynamic environments and, as a result, require significant ongoing IT intervention. And finally, while they may alert IT to an issue, they rarely provide sufficiently actionable information for resolving it. The exponential growth in the size and complexity of virtual environments has outstripped the ability of IT staff to set, manage, and continuously adjust threshold-based tools effectively. The time for an automated solution has come.

Advanced machine learning-based analytics software overcomes these and other challenges by continuously learning the many complex behaviors and interactions among interrelated objects – CPU, storage, network, applications – across the infrastructure. Unlike threshold-based solutions, this growing knowledge enables machine learning-based IT analytics solutions to provide a highly accurate means of identifying the root cause(s) of performance problems and making specific recommendations for resolving them cost-effectively.

This ability to aggregate, normalize, and then correlate and analyze hundreds of thousands of data points from different monitoring and management systems enable machine learning analytics solutions to transform massive volumes of data into meaningful insights across applications, servers and hosts, and storage and network infrastructures.

As it gathers and analyzes this wealth of data, the MLA system learns what constitutes normal behaviors, and it is this baseline that gives the system the ability to detect anomalies and find root causes automatically.

In addition to identifying root causes, advance machine learning based analytics solutions are able to simulate and predict the impact of making certain changes in resources and their allocations, which can be particularly useful for optimizing resource utilization and planning for expansion. This capability can also be useful for assessing if there is adequate capacity to handle a partial or complete failover. And these are topics worthy of a deeper dive in a future post.

Jerry Melnick is President and CEO of SIOS Technology.

Jerry Melnick is President and CEO of SIOS Technology
Share this

The Latest

October 04, 2024

In Part 1 of this two-part series, I defined multi-CDN and explored how and why this approach is used by streaming services, e-commerce platforms, gaming companies and global enterprises for fast and reliable content delivery ... Now, in Part 2 of the series, I'll explore one of the biggest challenges of multi-CDN: observability.

October 03, 2024

CDNs consist of geographically distributed data centers with servers that cache and serve content close to end users to reduce latency and improve load times. Each data center is strategically placed so that digital signals can rapidly travel from one "point of presence" to the next, getting the digital signal to the viewer as fast as possible ... Multi-CDN refers to the strategy of utilizing multiple CDNs to deliver digital content across the internet ...

October 02, 2024

We surveyed IT professionals on their attitudes and practices regarding using Generative AI with databases. We asked how they are layering the technology in with their systems, where it's working the best for them, and what their concerns are ...

October 01, 2024

40% of generative AI (GenAI) solutions will be multimodal (text, image, audio and video) by 2027, up from 1% in 2023, according to Gartner ...

September 30, 2024

Today's digital business landscape evolves rapidly ... Among the areas primed for innovation, the long-standing ticket-based IT support model stands out as particularly outdated. Emerging as a game-changer, the concept of the "ticketless enterprise" promises to shift IT management from a reactive stance to a proactive approach ...

September 27, 2024

In MEAN TIME TO INSIGHT Episode 10, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Generative AI ...

September 26, 2024

By 2026, 30% of enterprises will automate more than half of their network activities, an increase from under 10% in mid-2023, according to Gartner ...

September 25, 2024

A recent report by Enterprise Management Associates (EMA) reveals that nearly 95% of organizations use a combination of do-it-yourself (DIY) and vendor solutions for network automation, yet only 28% believe they have successfully implemented their automation strategy. Why is this mixed approach so popular if many engineers feel that their overall program is not successful? ...

September 24, 2024

As AI improves and strengthens various product innovations and technology functions, it's also influencing and infiltrating the observability space ... Observability helps translate technical stability into customer satisfaction and business success and AI amplifies this by driving continuous improvement at scale ...

September 23, 2024

Technical debt is a pressing issue for many organizations, stifling innovation and leading to costly inefficiencies ... Despite these challenges, 90% of IT leaders are planning to boost their spending on emerging technologies like AI in 2025 ... As budget season approaches, it's important for IT leaders to address technical debt to ensure that their 2025 budgets are allocated effectively and support successful technology adoption ...