Using Machine Learning Analytics to Deliver Service Levels
September 21, 2016

Jerry Melnick
SIOS Technology

Share this

While the layers of abstraction created in virtualized environments afford numerous advantages, they can also obscure how the virtual resources are best allocated and how physical resources are performing. This can make maintaining optimal application performance a never-ending exercise in trial-and-error.

This post highlights some of the challenges encountered when using traditional monitoring and analytics tools, and describes how machine learning, as a next-generation analytics platform, provides a better way to meet SLAs by finding and fixing issues before they become performance problems. A future post will describe how machine learning analytics can also be used to allocate resources for optimal performance and cost-saving efficiency.

Most IT departments identify performance problems with tools that monitor a variety of discrete events against preset thresholds. For example they set a specific threshold for CPU utilization. Whenever that threshold is exceeded, the tool fires off alerts. But the use of thresholds presents several challenges. They do not account for the interrelated nature of resources in virtualized environments, where a change to or in one can have a significant impact on another. Such interrelationships exist both within and across silos. Without a complete understanding of the environment across silos, users of threshold-based tools frequently discover that their attempts to solve a problem have simply moved it to a different silo.

Thresholds often generate "alert storms" of meaningless data and miss important correlations that might indicate a severe problem exists. They are ineffective in detecting the symptoms of subtle issues that may indicate a significant imminent problem such as "noisy neighbors" or datastore latency issues. These subtle issues may not exceed a threshold related to the root cause or may exceed a threshold in short, random intervals, producing alerts that are frequently lost amid the "noise" of alert storms.

Even the so-called dynamic thresholds cannot accommodate the constant change in dynamic environments and, as a result, require significant ongoing IT intervention. And finally, while they may alert IT to an issue, they rarely provide sufficiently actionable information for resolving it. The exponential growth in the size and complexity of virtual environments has outstripped the ability of IT staff to set, manage, and continuously adjust threshold-based tools effectively. The time for an automated solution has come.

Advanced machine learning-based analytics software overcomes these and other challenges by continuously learning the many complex behaviors and interactions among interrelated objects – CPU, storage, network, applications – across the infrastructure. Unlike threshold-based solutions, this growing knowledge enables machine learning-based IT analytics solutions to provide a highly accurate means of identifying the root cause(s) of performance problems and making specific recommendations for resolving them cost-effectively.

This ability to aggregate, normalize, and then correlate and analyze hundreds of thousands of data points from different monitoring and management systems enable machine learning analytics solutions to transform massive volumes of data into meaningful insights across applications, servers and hosts, and storage and network infrastructures.

As it gathers and analyzes this wealth of data, the MLA system learns what constitutes normal behaviors, and it is this baseline that gives the system the ability to detect anomalies and find root causes automatically.

In addition to identifying root causes, advance machine learning based analytics solutions are able to simulate and predict the impact of making certain changes in resources and their allocations, which can be particularly useful for optimizing resource utilization and planning for expansion. This capability can also be useful for assessing if there is adequate capacity to handle a partial or complete failover. And these are topics worthy of a deeper dive in a future post.

Jerry Melnick is President and CEO of SIOS Technology.

Jerry Melnick is President and CEO of SIOS Technology
Share this

The Latest

March 04, 2021

User experience is a big deal. For public-facing interfaces, the friction of a bad customer experience can send potential business to your competitors. For IT services delivered within your organization, bad UX is one of the main drivers of shadow IT ...

March 03, 2021

When we talk about accelerated digital transformation, a lot of it is embodied in the move to cloud computing. However, the "journey to cloud" will not be uniform across organizations and industries, says Sendur Sellakumar, Splunk's CPO and SVP of Cloud. The uncertainty of the pandemic means that in 2020, many organizations tried to rein in spending to get some last value out of existing infrastructure investments. Yet some things you can't skimp on ...

March 02, 2021

The Model T automobile was introduced in 1908 ... Within a few years, competitors arrived on the scene including relic names such as Overland, Maxwell, and names that survived like Buick and Dodge. So, what does this have to do with the hybrid cloud market? From a business perspective — a lot ...

March 01, 2021

DevOps Institute announced the launch of the 2021 SRE Survey in collaboration with Catchpoint and VMware Tanzu. The survey will result in a more in-depth understanding of how SRE teams are organized, how they are measured, and a deep dive into specific automation needs within SRE teams ...

February 25, 2021

Organizations use data to fuel their operations, make smart business decisions, improve customer relationships, and much more. Because so much value can be extracted from data its influence is generally positive, but it can also be detrimental to a business experiencing a serious disruption such as a cyberattack, insider threat, or storage platform-specific hack or bug ...

February 24, 2021

Previously siloed IT teams and technologies are converging as enterprises accelerate their modernization efforts in reaction to COVID-19, according to a study by LogicMonitor ...

February 23, 2021

You surf the internet, don't you? While all of us are at home due to Covid lock-down and accepting a new reality, the majority of the work is happening online. IT managers are looking for tools that can track the user digital experience. Executives are reading a report from Gartner or Forrester about some of the best networking monitoring solutions available on the market. Project managers are using Microsoft Teams online to communicate and ensure team members are meeting deliverables on time. Remote employees everywhere use OWA to check their office mails. No matter what, you can be quite sure that everyone is using their favorite browser and search engine for connecting online and accomplish tasks ...

February 22, 2021

With the right solutions, teams can move themselves out of the shadows of error resolution and into the light of innovation. Observability data, drawn from their systems and imbued with context from AI, lets teams automate the issues holding them back. Contextualized data and insights also give them the language to speak to the incremental, product-led approach and the direction to drive key innovations in customer experience improvement. Communicating value becomes a much easier proposition for DevOps practitioners — and they can take their seat at the company table as contributors to value ...

February 18, 2021

Prediction: Successful organizations will blur (or erase) the line between ITOps and DevOps. DevOps has to coexist with traditional IT operations ... So bring a little DevOps to every aspect of IT operations. You don't even have to call it DevOps ...

February 17, 2021

The use of unified communications and collaboration (UC&C) solutions has increased since the start of the pandemic, and this increased use has created challenges for IT teams, according to a survey commissioned by NETSCOUT SYSTEMS ...