Skip to main content

Advanced IT Analytics, AIOps and Big Data - 7 Key Takeaways - Part 1

Dennis Drogseth

OK, the data is in! Three hundred respondents and analysis that took me multiple weeks and resulted in a summary deck of nearly 200 slides. And that's just the summary deck.

But I promise a much more focused exploration of the "IT analytic universe," one that's all digestible within 45 minutes (including Q&A), with the upcoming EMA webinar on October 10.

The goal of the research was to look at how advanced IT analytics (AIA) — or EMA's term for primarily what today is best known as "AIOps" — is being deployed, as mentioned in a prior APMdigest blog.

We asked what contributes to its success in terms of technology, process and best practices, organizational ownership, and functional priorities.

We also wanted to map how AIOps, or IT operations analytics, was being deployed in the context with other analytic technologies, such as big data, as well as more niche areas such as security-specific analytics, end-user-experience analytics, change management analytics, and capacity analytics.

We asked these questions to a respondent base that was about 2/3 North America, 1/3 Europe (England, Germany and France), across a wide range of roles. We got a solid IT executive presence, along with technical stakeholders such as data scientists, security-related stakeholders, and operational and IT service management (ITSM) stakeholders.

So what did we find?

Without giving away the heart and soul of the webinar, which will give you data to draw your own conclusions, here are seven of my own personal takeaways, some of which frankly surprised me.

1. AIOps is winning strategy

AIOps was the overall the winning strategy. While AIOps was not the most pervasive technology associated with advanced IT analytics in our research (big data led as the most prevalent before quotas), it was the most effective and pervasively advanced.

Indeed, AIOps showed the highest success rates, the greatest likelihood of supporting DevOps, IoT and AI bots, and led in use case capabilities as well.

2. AIA are eclectic in use case

Advanced IT analytics are eclectic in use case and becoming more so. Overall support for DevOps, IoT, AI bots, and multiple use cases including end-user experience, security, capacity analytics, cost-related optimization, show increasing diversity in need and value.

The implications of this are significant. AIOps and AIA more broadly are evolving as platform investments rather than niche solutions. This means that the data consumed and applied can be leveraged in multiple ways, bringing added benefits to the investment, while also helping to more effectively unify various roles, organizations and stakeholders across IT.

3. AI bots and automation

AI bots and automation are not a separate world from AIOps and AIA. The strong and perhaps surprising correlation between AI bots in use, AI bots as a sign of overall analytics success, and AI bot integrations into broader analytic directions all indicate that the AIOps "market" and the AI bots "market" should not be viewed in isolation.

This also helps to reinforce the critical handshake between automation and AI which was also reinforced by the research findings indicating that, on average, respondents targeted more than five automation integrations.

Read Advanced IT Analytics, AIOps and Big Data - 7 Key Takeaways - Part 2, covering 4 more key takeaways from EMA's research.

Hot Topics

The Latest

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...

Service disruptions remain a critical concern for IT and business executives, with 88% of respondents saying they believe another major incident will occur in the next 12 months, according to a study from PagerDuty ...

IT infrastructure (on-premises, cloud, or hybrid) is becoming larger and more complex. IT management tools need data to drive better decision making and more process automation to complement manual intervention by IT staff. That is why smart organizations invest in the systems and strategies needed to make their IT infrastructure more resilient in the event of disruption, and why many are turning to application performance monitoring (APM) in conjunction with high availability (HA) clusters ...

In today's data-driven world, the management of databases has become increasingly complex and critical. The following are findings from Redgate's 2025 The State of the Database Landscape report ...

With the 2027 deadline for SAP S/4HANA migrations fast approaching, organizations are accelerating their transition plans ... For organizations that intend to remain on SAP ECC in the near-term, the focus has shifted to improving operational efficiencies and meeting demands for faster cycle times ...

As applications expand and systems intertwine, performance bottlenecks, quality lapses, and disjointed pipelines threaten progress. To stay ahead, leading organizations are turning to three foundational strategies: developer-first observability, API platform adoption, and sustainable test growth ...

Advanced IT Analytics, AIOps and Big Data - 7 Key Takeaways - Part 1

Dennis Drogseth

OK, the data is in! Three hundred respondents and analysis that took me multiple weeks and resulted in a summary deck of nearly 200 slides. And that's just the summary deck.

But I promise a much more focused exploration of the "IT analytic universe," one that's all digestible within 45 minutes (including Q&A), with the upcoming EMA webinar on October 10.

The goal of the research was to look at how advanced IT analytics (AIA) — or EMA's term for primarily what today is best known as "AIOps" — is being deployed, as mentioned in a prior APMdigest blog.

We asked what contributes to its success in terms of technology, process and best practices, organizational ownership, and functional priorities.

We also wanted to map how AIOps, or IT operations analytics, was being deployed in the context with other analytic technologies, such as big data, as well as more niche areas such as security-specific analytics, end-user-experience analytics, change management analytics, and capacity analytics.

We asked these questions to a respondent base that was about 2/3 North America, 1/3 Europe (England, Germany and France), across a wide range of roles. We got a solid IT executive presence, along with technical stakeholders such as data scientists, security-related stakeholders, and operational and IT service management (ITSM) stakeholders.

So what did we find?

Without giving away the heart and soul of the webinar, which will give you data to draw your own conclusions, here are seven of my own personal takeaways, some of which frankly surprised me.

1. AIOps is winning strategy

AIOps was the overall the winning strategy. While AIOps was not the most pervasive technology associated with advanced IT analytics in our research (big data led as the most prevalent before quotas), it was the most effective and pervasively advanced.

Indeed, AIOps showed the highest success rates, the greatest likelihood of supporting DevOps, IoT and AI bots, and led in use case capabilities as well.

2. AIA are eclectic in use case

Advanced IT analytics are eclectic in use case and becoming more so. Overall support for DevOps, IoT, AI bots, and multiple use cases including end-user experience, security, capacity analytics, cost-related optimization, show increasing diversity in need and value.

The implications of this are significant. AIOps and AIA more broadly are evolving as platform investments rather than niche solutions. This means that the data consumed and applied can be leveraged in multiple ways, bringing added benefits to the investment, while also helping to more effectively unify various roles, organizations and stakeholders across IT.

3. AI bots and automation

AI bots and automation are not a separate world from AIOps and AIA. The strong and perhaps surprising correlation between AI bots in use, AI bots as a sign of overall analytics success, and AI bot integrations into broader analytic directions all indicate that the AIOps "market" and the AI bots "market" should not be viewed in isolation.

This also helps to reinforce the critical handshake between automation and AI which was also reinforced by the research findings indicating that, on average, respondents targeted more than five automation integrations.

Read Advanced IT Analytics, AIOps and Big Data - 7 Key Takeaways - Part 2, covering 4 more key takeaways from EMA's research.

Hot Topics

The Latest

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...

Service disruptions remain a critical concern for IT and business executives, with 88% of respondents saying they believe another major incident will occur in the next 12 months, according to a study from PagerDuty ...

IT infrastructure (on-premises, cloud, or hybrid) is becoming larger and more complex. IT management tools need data to drive better decision making and more process automation to complement manual intervention by IT staff. That is why smart organizations invest in the systems and strategies needed to make their IT infrastructure more resilient in the event of disruption, and why many are turning to application performance monitoring (APM) in conjunction with high availability (HA) clusters ...

In today's data-driven world, the management of databases has become increasingly complex and critical. The following are findings from Redgate's 2025 The State of the Database Landscape report ...

With the 2027 deadline for SAP S/4HANA migrations fast approaching, organizations are accelerating their transition plans ... For organizations that intend to remain on SAP ECC in the near-term, the focus has shifted to improving operational efficiencies and meeting demands for faster cycle times ...

As applications expand and systems intertwine, performance bottlenecks, quality lapses, and disjointed pipelines threaten progress. To stay ahead, leading organizations are turning to three foundational strategies: developer-first observability, API platform adoption, and sustainable test growth ...