Real-Time Monitoring Metrics - The Magical Mundane
September 12, 2012

Larry Dragich
Technology Executive

Share this

Application Performance Management (APM) has many benefits when implemented with the right support structure and sponsorship. It's the key for managing action, going red to green, and trending on performance.

As you strive to achieve new levels of sophistication when creating performance baselines, it is important to consider how you will navigate the oscillating winds of application behavior as the numbers come in from all directions. The behavioral context of the user will highlight key threshold settings to consider as you build a framework for real-time alerting into your APM solution.

This will take an understanding of the application and an analysis of the numbers as you begin looking at user patterns. Metrics play a key role in providing this value through different views across multiple comparisons. Absent from any behavioral learning engines which are now emerging in the APM space, you can begin a high level analysis on your own to come to a common understanding of each business application's performance.

Just as water seeks its own level, an application performance baseline will eventually emerge as you track the real-time performance metrics outlining the high and low watermarks of the application. This will include the occasional anomalous wave that comes crashing through affecting the user experience as the numbers fluctuate.


Depending on transaction volume and performance characteristics there will be a certain level of noise that you will need to squelch to a volume level that can be analyzed. When crunching the numbers and distilling patterns, it will be essential to create three baseline comparisons that you will use like a compass for navigation into what is real and what is an exception.

Real-Time vs. Yesterday

As the real-time performance metrics come in, it is important to watch the application performance at least at the five minute interval as compared to the day before to see if there are any obvious changes in performance.

Real-Time vs. 7 days Ago

Comparing Monday to Sunday may not be relevant if your core business hours are M-F; using the real-time view and comparing it to the same day as the previous week will be more useful - especially if a new release of the application was rolled out over the weekend and you want to know how it compares with the previous week.

Real-Time vs. 10 Day Rolling Average

Using a 10, 15 or 30 day rolling average is helpful in reviewing overall application performance with the business, because everyone can easily understand averages and what they mean when compared against a real-time view.

Capturing real-time performance metrics in five minute intervals is a good place to start. Once you get a better understanding of the application behavior you may increase or decrease the interval as needed. For real-time performance alerting, using the averages will give you a good picture when something is out of pattern, and to report on Service Level Management using percentiles (90%, 95%, etc.), will help create and accurate view for the business. To make it simple to remember, alert on the averages and profile with percentiles.

Conclusion

Operationally there are things you may not want to think about all of the time (e.g. standard deviations, averages, percentiles, etc.), but you have to think about them long enough to create the most accurate picture possible as you begin to distill performance patterns with each business application. This can be accomplished by building meaningful performance baselines that will help feed your Service Level Management processes well into the future.

You can contact Larry on LinkedIn.

Related Links:

For more information on the critical success factors in APM adoption and how this centers around the End-User-Experience (EUE), read The Anatomy of APM and the corresponding blog APM’s DNA – Event to Incident Flow.

Prioritizing Gartner's APM Model

Event Management: Reactive, Proactive, or Predictive?

APM and MoM – Symbiotic Solution Sets

Larry Dragich is a Technology Executive and Founder of the APM Strategies Group on LinkedIn
Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...